IC验证概念总结
一份代码,在写完之后,一定要再经过一次或多次整理和打磨,才能算完成的;一份代码,一定要把其有效代码行,精简、锤炼到最少、最短、最有效,才能算完成的。
下面这些问题和回答是忘记是在哪里看到的了,参考夏晶的文章,和我自己的验证经验,做了补充,作为日后学习的参考。
Q:验证的目的?
A:这也是发现Bug,发现所有的Bug,或者证明没有Bug(转自夏晶的帖子),无论任何验证语言、任何验证环境、任何验证方法学、任何Feature List,都是为了达成这一目的而使用的方法,或者所手段。这是夏晶给出来的回答,很对,验证里面大部分的工作都是在尽可能的发现更多的bug。
注释:可是我觉得验证目的应该有更好的阐述,验证的目的是为了验证设计的可用性!发现bug,清楚掉所有的bug,只是证明这个设计是可用的,没有问题的,可是验证不应该仅仅局限于此,我们还需要验证设计的性能(performance),证明这个设计是高效的,
Q:对验证工程师的要求?
Hacker mentality ,Organized testing ,Tool automation。
如何做更多的testcase、如何覆盖更多的测试点、如何充分的利用服务器、如何尽可能最大化的自动比对
强调一下:“注重细节”是验证工程师一个非常非常好的工作习惯。
(验证人员必须要懂得代码,懂得分析逻辑,甚至能够通过代码分析出可能的疑点,更好的,能够理解整个系统的运作,理解前端后端的实现,找出设计人员视角的盲区,才能更好的发现Bug,解决Bug),从当前表面上正确运行的波形中,对照代码,寻找其他可能发现的问题,这是一种好的分析方式,值得学习!!
当然对验证工程师的要求不仅仅是这些,还有很多附带的要求(慢慢补充):
1. 淘金的执念,缺陷就在那里,作为验证人员,一定要有这种强烈的,不可动摇的执念或者说饥渴感
2. 淘金的技巧,如何找关键部分,是非常讲究的事情,兼顾风水、心理、外交、直觉等多方面知识,很难给出综合性的分析。下面几点可作为Hint:
1) 如前面所说的,只知道跑TC,跑错后让设计人员定位的验证人员负责的区域;
2) 对实现没什么概念的设计人员设计的模块;
3) 责任人变来变去的地方;
4) DFT相关的地方(验证人员的DFT知识严重缺乏);
5) 规格老是变来变去的地方及其可能影响的地方;
6) 第一次做代码集成人员连接的顶层位置;
7) 浮浮躁躁、毛毛糙糙的新员工负责的地方;
8) 时钟域(几乎当前所有的验证人员都不关心时钟正确性,只要能跑TC);
9) 所有人都认为没有问题的地方;
10) 验证人员宣称放弃的地方;
11) 技术难度比较高的地方;
12) 你以前项目发生过问题的地方(相同或类似的问题很大几率存在);
13) 整个系统中相关性非常高的一连串区域;
14) 协议和时钟转换的区域;
15) 其他隐藏在内心深处的秘密。
找到最后的bug的经验:
1) 反向思考。最后阶段,大部分人员的思路都已经固化了,像一条绳子一样,不断的朝一个方向缠绕、缠绕。反向的思考往往能突破这个限制。当然,反向思考这个东西,很多时候就是忽悠,难以做到。我的一个经验是可以多听取一下局外人的一些意见,例如软件人员的意见。当然,这其中大部分的意见都是无关痛痒的瞎扯,但偶尔、偶尔会出现一些能够引发进一步思索的缺口。
2) 和谐。这里没有任何问题,芯片运作一切正常,没有任何差错。但是你拿着架构图看、或者拿着时钟结构图看、或者打开最复杂的ST波形看,心中却总是有一种说不清道不明的感觉,没错,虽然一切正常,但是某个地方,却有那么一点点不和谐,就像合唱团中插入了一个走调的家伙一样。可能是非常微妙的一个路径,可能是波形上非常诡异的一个脉冲。对了,就是这个地方,追下去,即使工作正常,这里也可能存在和设计意图不符的东西存在。
80%的问题都可以通过20%的测试和时间去发现和解决,而剩余20%的问题需要80%的测试和时间去解决,首先会build几个最初的TC用来测试基本的通路能否pass,然后build一条复杂的Directed TC,尽量覆盖70%的feature,交付给设计人员进行初始定位问题,这条TC能够帮助设计人员定位超过70%的问题,而验证人员在这一个月中,有足够的时间完善Corner的TC、Random的TC和环境,然后集中精力完成剩下10%问题的解决。
检视:
代码检视是最容易发现问题的步骤,代码检视不仅仅是设计人员的事,也是验证人员的事。所以对于新交付的代码,按照我的经验,建议验证人员先检视(尤其是设计人员是两年以内设计经验的),不过,这个检视绝对不要是傻看代码,要跑一条TC,最简单的,就一个读写就可以了,保存所有信号的波形,然后打开Verilog代码,对照着波形检视。
1) 所有信号全部抓出来看一遍,红色的(X)、黄色的(Z),简单确认一下,然后Alt+Tab,切换到CMM页面即可(百试百灵,至今为止从未失手,nLint不是万能的)。
2) 模块间的握手信号,全部抓出来看一下,是脉冲信号还是电平信号(98.765%的设计人员,都不会在信号名上注明是脉冲或电平),脉冲信号是必须立刻采样的,电平信号是需要鉴沿的,如果握来握去,如果还有异步,基本上,检视出问题的概率非常高。
3) 在一个always中,对多个信号赋值的;在一个always中,elsif数量超过6个的;在一个always中,if的条件组合中包括超过5个信号的;都是高产田。
4) 协议理解上和自己理解相异的,例如对于我,AXI相关设计未按照我《AXI总线设计的二十一条忠告》的。
代码,是设计人员思路的直接映射,而设计人员的思路,有时候真的是一根筋。通过检视,或者加上设计人员的讲解,可以直接了解一下到设计人员的思路、逻辑思维模式,非常有助于去构造一些检测其思路正确或不正确的点,验证人员的思维其实很简单,抬竹杠就好。
到最后阶段的检视,对于验证人员,可能需要更加地扩大视角,围绕代码为核心,TC、波形、脚本都需要涉及。对于这里,我还是再强调一遍吧。验证人员拥有设计人员所不同的视角,所以一定能够发现潜藏在其中的问题.
检视的经验:
OK,这里我可以再补充一下我个人检视代码的经验,我的步骤如下:
1) hdl_stat统计整个模块代码行数,及各个子模块代码行数分配;
2) 打开代码顶层,快速浏览整个代码,获取这几个信息:代码风格、设计人员的思维成熟度、代码结构、重用度、逻辑类代码和集成类的分布、关键C Path和关键D Path的位置;
3) 按照现有的经验,其实已经大致能够推断出该模块整体的缺陷数量和缺陷分布了;
4) 先简后难,先扫除直接就能够看出的Bug,这种Bug分布比较散,没什么特别的依据,但很多问题,真的很简单,就在设计人员鼻子底下(不要超过2小时);
5) 用Verilog构造最简单激励给模块,保留波形供对照,如有疑问,更改激励再仿(不要超过3小时);
6) 然后,因为我有设计经验,我就会思考如果自己是设计人员,我会怎样划分模块、描述关键控制逻辑,如果和设计者不符的地方,着重分析;对识别出来的关键控制逻辑,例如异步握手、堆栈、链表、数据拼接,静下心来,慢慢看,慢慢看。对于疑点,构造简单激励,出波形对比。
OK,我拿我曾经的一个模块Security Engine代码作为实例,如果我进行检视如何进行。
1) 代码行数约17000,行数最多的集中在几个整体控制模块:sec_ctrl(2235)、sec_slave(2121)、sec_channel(1669)、sec_master(1193),除了这几个大模块,几个算法都分散为非常多小模块,相互调用搭成aes_core、kasumi_core等算法模块被顶层调用。
2) 第一轮检视,快速浏览。各个算法模块的输入输出非常干净,都是通过run、done进行握手,其内部都是轮运输,通过round控制,其中aes_core还是纯复用以前项目的模块,而顶层几个ctrl模块,则相互交互非常复杂,特别是代码数量最多的模块,数据交互特别复杂的sec_ctrl和set_master,居然没有状态机,看起来设计人员是希望通过自己的逻辑思维,直接描述其控制;而sec_slave,纯寄存器描述,而且是大量复制代码搭建,技术含量低;结构上,sec_channel是一级控制,sec_ctrl和set_master是二级控制,各个算法Core是三级控制。代码风格上,设计人员部分遵守代码规范,但很多地方自以为是,为了自己方便写了不少擦边球的代码。
3) 分析,aes_core理论上缺陷将很少,而其他几个算法Core,如果round控制上没有发现错误,那么错误通过RM比对验证,效率更高;然后,sec_channel,可以着重关注状态机和状态机对应的控制信号是否正确;最后,sec_ctrl和set_master的交互,一定是关键,特别是代码量大的部分。
4) 第二轮检视,对算法Core的各个round控制信号检视,是否符合run、done控制;对sec_slave的寄存器读写控制检视,是否有笔误和拷贝的错误;检视整个代码集成和互联;简单查看其它代码中if和else比较复杂的地方,记录可能的疑点。
5) 构造一条TC,正常而言,是通过sec_channel调配sec_ctrl完成一次算法运算(用最简单的Verilog搭建TB,超过2小时是否非常失败的事情)。根据波形,将sec_channel、sec_ctrl和set_master主要逻辑,全部过一遍。
6) 关键逻辑,重点关注,关键疑点,修改TC,重点覆盖。
让合适的人做合适的事情,以及合适的搭配和互助。
Q:如何跟踪缺陷?
A:可以考虑bug-zillar这类的工具---- 自动跟踪问题,在AMD的工具叫UBTS
Q:作业提交系统(lsf或grid-engine),这个工具需要继续去学习!
A:充分和合理的利用计算资源。
Q:环境变量的管理?
A:个人推荐使用Module 工具(这个工具没听说过,不过我比较倾向于使用python来进行环境变量的配置和使用)。很多公司都是用这个免费的工具
Q:验证工程师需要掌握的基本技术?
A:分享一份我做的基本培训内容安排,供参考:Perl,Makefile,AMBA介绍,SVTB.pdf ,sva,几种用到的编程语言的File operation ,Low-power,C-pointer,Cshell-AWK+SED,体系结构相关的一些内容,SV-1Day training ,VMM_source_code ,Arm的嵌入式编程的基本概念
Q:自动化必须吗?
A:不是必须的,但是应该尽量去实现自动化。总之是多让机器跑。如果人均License太少的话,要尽量做到白天debug、晚上让机器跑。“比对”这种事情太机械了,所以尽量让机器做,做这种事情机器的效率比人高太多(wolf评论:You are right!Absolutely right!)。把精力放在构造testcase、testbench、coverage以及debug和分析上。
Q:Testplan如何做?
A:形式不重要,xls可以、word也可以、txt的也可以。但是来源于Spec!testplan里除了要罗列function-test-piont,还应该有error-injection(wolf评论:给你一个错误的激励看你有啥反应!)和random-test-point以及cover-point和assertion(wolf评论:SVA一定要掌握!)。
需要和各个team仔细逐条review testplan,有些针对具体实现的coverpoint可能只有designer能提出来,需要尽早提出。Tb搭建之前,要充分的review testplan,因为Testplan的较大修改有可能会导致整个testbench的架构调整,effort较大。Testplan是一个需要不停增加,不停迭代、不停review的东西。
Error injection要和RTL-designer逐条review,一个是看看RTL-designer是不是没有想到,一个是设计是不是本身就不允许、或者架构上本身不可能出现。Error-injection应该往深里去好好挖掘。例如:内存控制器长时间不回数据(这里本身是一个随机点)à由于长时间不回数据是否产生错误中断à产生错误中断以后如何响应à响应不过来如何恢复à必须用software reset做恢复的话,对software的时机是否有要求àsoftware前需要遵守什么要求和步骤
虽然现在有一些工具可以根据规范化描述的testplan自动生成cover-point和assertion,不过我觉得自然语言描述的testplan应该是最“自然”的。
注释:
上面的回答算是一个很非常中规中矩的回答。但是一个完整的Testplan里面我们需要考虑更多的东西,来保证我们的验证能够快速的实施,功能和覆盖要求能够快速的收敛,最后拿到verification report,这里面有个概念,叫可执行的验证计划,要覆盖到整个验证过程。简单来说,订制验证计划,需要做以下几个方面的工作:
1. 创建一个模板(如果没有的话),形式不重要,xls可以、word也可以、txt的也可以。这个工作的重要性在于保持文档的一致,另外方便验证人员订立计划,验证人员只要按照后续的要求填入对应的计划就可以了。
2. 验证计划制定:
a 首先要评估验证需求,了解要验证的模块,验证的项目时间,最终要达到的基本目标等等。
b 进行重用评估,这里面其实包含对DUT重用模块的分析(哪些模块是已经验证好的,这些以后都可以在覆盖率里面进行exclude的),和验证部分的分析,有哪些interface的uvc已经做好可以在build环境的时候进行复用等等
c 验证假设,DUT的某些模块已经验证完全了,我们假设这些模块没有问题等等
d 验证范围评估,选择合适的验证策略直接测试或者随机测试
e 验证计划里面要包含上面提到的内容:根据spec列出要verification的feature,给这些feature编排优先级,根据每一个feature订制对应的覆盖计划,有些feature可以通过code coverage就可以看到,有些需要使用function coverage,而有些需要property coverage。验证计划里面也要包含整个TB的架构,怎么实现,需要哪些UVC,以及build的一个流程,这里面需要考虑,首先要给设计人员一个可以初始reference的TB,然后再完善整个TB进而测试完整的环境,思考整个TB的check机制,data check和assertion check。还应该有error-injection ,Error injection要和RTL-designer逐条review,一个是看看RTL-designer是不是没有想到,一个是设计是不是本身就不允许、或者架构上本身不可能出现。当然我认为,一个验证计划怎么详细都不过分,这会使你后面的工作有了参考,事半功倍!
Q:哪些地方做随机?
A:1)随机配置(一般都想得到的),但是对于一个封闭的系统常常是最不重要的,因为firmware可以自己开发,从而控制配置的流程和数值
2)随机激励数据(很重要)
3)随机时序(通常容易被忘记)
但是有一点要明确:随机不是全随机,是约束随机,是在合理的范围内尽量充分的随机。
Q:写约束随机哪些地方要注意?
A:推荐看snug paper。(over-constraint导致测试不完全,欠约束导致不必要的debug和资源的浪费)约束的效率:写的不好会导致随机失败
(总结一些约束的技巧进行补充)
Q:Coverage如何做?
A:code-coverage和function-coverage(covergroup, assertion coverage)。对于constraint-random的地方用covergroup做,对于一些时序的coverage可以用assertion-coverage。
Q:核心脚本?
A:单个仿真的脚本---- 建立所使用的不同的目录、不同的seed(目录可以叫case_$seed这样的格式;当然对于直接的testcase,可以是case_$casename);环境变量和license的管理;如果需要做离线比对也可以让脚本来自动调用比对脚本或命令(也可以在tb的代码里使用$system或者$systemf)。
批量仿真的脚本----自动批量提交到lsf上。自动收集log信息以判断哪些case失败,对于失败的case能自动重新提交,并且自动dump波形。以及产生批量仿真结束以后的汇总信息。
Q:SV中重要的点?
A:特殊的数据类型,比如新增的三种array(动态、associate、queue)、string(match函数、backref函数,参考vcs的svtb.pdf);面向对象编程思想(handle);coverage;constraint-random。
熟练掌握这些语言点的用法很有必要。
Q:是否要使用VIP?
A:VIP的使用--- 复杂仿真模型推荐用VIP,简单的建议自己做。如果自己开发仿真模型的话,也推荐看看VIP的文档,经常可以看到一些有价值的error-injection和random-test-points来完善你自己的testplan。
Q:要不要做门级仿真?(这个需要在进行理解一下,后仿真的时候需要)
A:如果是走design-service,不知道最终带sdf的netlist仿真是否需要做,如果做的话,最好在release 综合后netlist的时候也做一下(插完scan-chain和做完CTS以后有条件也做一下),如果需要VCD文件做power分析和指导PR工具的话,那么门仿是必须做的。如果design-service公司不负责调量产pattern的话,那么ATPG等的门仿是需要自己做的。
门仿并不是sign-off标准,但是推荐还是做一下,经常还是能跑出问题来的。如果做sdf反标的门仿的话,对于async的多级dff要剔除掉(VCS和NC都有option,vcs可以查手册里“+optconfigfile”,NC查”+nctfile”)。反标Sdf仿真的时候推荐notimingcheckà no_notifyà checking_timing with optconfigfile的三步走。
前期在评估IP的时候,有可能个别模块可能需要单独搭门级环境,比如CPU-IP有RTL,要自己做flow,那么通常是需要做门仿的(有可能主要是为了跑vcd或saif做power分析)。
Tb的修改:由于CTS和综合的原因,导致时钟名字和信号名字有变化,所以tb有可能要修改。另外,tb里的probe文件建议使用反沿采样,也是为了避免带sdf反标以后clk踩不到整个data-vector。除此之外,个人不太建议在门仿的时候依然使用自动化的tb。因为你的tb里抓的很多内部信号可能名字变了(或者被优化掉了),这样导致tb在门级跑的时候维护起来有些麻烦。有些信号即便名字不变,可能会反向,这样会导致你的checker误报错。毕竟在门仿的时候不用跑太多的testcase,可以靠几条和rtl仿真一一对应的仿真来覆盖。门仿毕竟不是为了function,而是为了检查timing。
如果你的设计里用了不带reset的dff的描述,由于开始不定态的传播,可能导致你门仿失败。个人推荐的方法是:如果特别多的话,用脚本找到对应模块里所有dff,产生一个force-release文件(注意:很影响编译时间,所以能不用就不用)
注释:门级仿真我现在做的不多,这些意见很中肯值得借鉴!
Q:FPGA和仿真如何安排顺序?
A:首先是schedule优先,其次是力所能及。但是原则上是先仿真然后再上FPGA,仿真可以很快的扫清一些基本的bug。给仿真的时间充裕的话,那就仿真尽量往前赶,尽量在上FPGA之前多测一些(不是太多case的情况下,FPGA的测试速度毕竟要快一些)。即便FPGA很着急上,起码也让仿真先用几条直接testcase调试通过最基本的功能。第一版FPGA可能因为接死、悬空和信号反向导致逻辑被优化掉,这些问题有时候用仿真也不能全发现,就要结合leda等lint工具。
注释:上面说的很对,原则上一定是先仿真,然后再上FPGA,这个地方我需要再补充一下,仿真并不仅仅可以是RTL仿真通过,其实也可以做FPGA综合出来的网表仿真,跟ASIC综合后仿真相通,需要读入FPGA厂商提供的库文件,SoC的仿真要麻烦一些,涉及到memory的初始化。
Q:仿真如何复现FPGA发现的bug?
A:首先保证配置的一致性,可以考虑做一些内部的工具。仿真上要probe寄存器操作端口,FPGA上要能把firmware里的配置流程转成文本。
如果配置一样还是不能发现的话,再去逻辑分析仪上debug时序。当然,CDC的问题在仿真上是看不到的。
个人不建议做FPGA网表的门仿,有点得不偿失。
Q:FPGA不能cover的部分的验证?
A:PAD_Mux(Test_mux)、Clkrst、Power-management-unit 以及FPGA跑不到的高频所对应的功能。Clkrst这部分主要就是pll config、clock-gate、divider、soft-and-hard reset,从测试点的角度还是很明确的,RTL代码修改的少的话,可以考虑不用做太复杂的验证(但是clkrst模块里可能会有一些控制逻辑或者状态机,比如:sdram的切频,这里一般是需要一个状态机控制的,这个需要仔细和小心的验证。)
PAD_mux个人比较推荐使用自动化的流程,因为代码风格非常固定,所以可以用脚本生成RTL和用脚本生成testcase(一般这样的testcase是一堆的force)
PMU建议看看VCS的MVsim的文档,里面介绍的很清晰了。(还是要配合静态验证工具MVRC一起来做)没有MVSim的话,可以考虑用VCS的$power $isolate。
Q:固化的firmware如何验证?
A:个人不建议让仿真去覆盖firmware,但是对于FPGA和ASIC不一样的地方要重点覆盖到。大的流程要覆盖到,其他细节由FPGA保证。
Q:架构评估?
A:我经验也不多,举几个例子。比如你的总线拓扑合理不合理?内存控制器的效率(机制)是否满足你的应用?使用哪类Cache?Cache的大小?模块的FIFO深度够不够(error-injection可以测到)?算法需要多少mips(rvds等工具带的模拟器可以给出结论,但是要让模拟器能考虑到内存access的latency)?软件里如果有不少memcpy的话,要模拟系统运行起来以后memcpy的效率。
如果没有人手专门用ESL(如Carbon的CMS)(wolf评论:what?再次老土!)工具的话,建议在验证平台上做(当然一旦有大问题,要推翻架构会很麻烦)。
Q:哪些资源要节省?
A:当然首先是人(数)要节省,人的成本比起计算资源成本和存储资源成本要大多了。提高技术、提高自动化程度才能节省人的成本。(低Package这种方法属于伤天害理的手段,不是正当途径)
减少硬盘需求(如果有必要)共享simv/simv.daidir csrc(包括regression过程中自动清理磁盘空间);激励数据是否可以不一下子全产生出来(对于通讯类的比较有意义,由于是floating的激励数据,所以经常很短时间就需要GB的空间)。注意对每个人每个项目设置硬盘quota,避免被个别人撑爆存储。
减少编译次数(soc项目里比较有必要,testcase基于firmware),parallel-compile or separate-compile ,vmm-test,在一个testcase里做多个功能点的覆盖,fsdb/vpd的dump层次的改变不要重新编译(fsdb有command,vpd可能得用ucli)。
Q:设计规模大了编译很慢怎么办?
A:有时候设计规模太大导致编译很慢,但是SoC项目很多情况下,功能模块彼此之间是用总线隔开的(即便在功能模块之间有硬件连线也可以考虑用仿真模型来做替代)。在仿真某一个功能模块的时候,可以考虑dummy掉不相关的模块。
但是这就引入了一个新问题“文件列表的维护”。基于这种dummy的思想,文件列表的维护就成了tb里的一个很关键的地方,要尽量避免维护太多的文件列表。我个人比较推荐利用脚本来自动产生所需要文件列表。除此之外,仿真用的文件列表里我个人比较推荐用绝对路径(避免别人debug的时候出现调错文件的问题,另外可以指定不同的工作目录)。CVS里用相对路径,相对路径转绝对路径的工作由脚本自动完成。
Q:编译还是运行option?
A:为了减少编译的次数,能使用运行的option就使用运行的option。比如使用$value$plusargs $test$plusargs
Q:Assertion谁来写?
A:建议RTL designer和IC验证工程师都写。内部实现细节的描述由RTL-designer自己写,模块之间的时序由IC验证工程师来写。(wolf评论:对头!一定找掌握该技能!)
Assertion的抽象层次有些高,写复杂了有时候极容易出现和你想象不一致的地方。而且如果spec上描述的不清楚,误报assertion-fail也会引入不必要的debug时间。
Q:自动化的tb搭好了,波形对验证工程师来说还那么重要吗?
A:非常非常的重要。毋庸置疑!!波形是最直接的,checker可能写错,有问题没有报出来。但是没有激励就没有所要的波形信息。(wolf评论:Right!Bench可能出错!环境可能出错!C model可能出错,总之,是要是人做的事都可能出错!所以,Design Engineer要错的第一件事是入口检测,一定要把好入口关,验证周边无误后再把自己的东西给切上去!)
Q:如何重用?
A:reuse可以分为横向和纵向。(wolf评论:尽可能充用!降低开发周期,降低风险)
横向是指项目之间。这个reuse主要包括:文档和tb、script。
纵向是指同一个项目内,一般是模块级和系统级(包括子系统级)。一般是tb和script。
比如在一个项目中,所有的tb都是用run_sim和regress脚本的,只是带的filelist不同。对于tb来说,driver和generator可能不能reuse,但是一般monitor和scoreboard这类被动接收的一般都可以reuse。而且testcase通常是可以reuse的。
对于SoC类项目,为了保持testcase的一致性,我个人比较倾向于都使用firmware做testcase,这就要求
1)模块的验证也要基于一个(类)soc的tb下验证。
2)cpu-ip要尽量简单,否则cpu会占用太多的仿真资源。个人推荐用iss(wolf评论:what?)做cpu-ip,负责配置寄存器。
Q:regression什么时候做?做多少次?
A:tb好了以后,任何时候都可以做。下班后尽量提交regression到lsf里,让机器充分的跑。如果你的环境是random的,那么随机空间实际是很大的(随着random-test-point的增长指数级增长),所以只要seed不同,其实是可以跑到各种各样的情况。
Q:DPI要不要用?
A:有的人很喜欢用DPI,不过我个人不喜欢用。我尽量是把C封装好(自己写wrapper),产生可执行文件,然后在tb里用$systemf(wolf评论:what?verilog里的系统函数?sv里的系统函数?sc?还是贵公司封装出来的?)来调。不喜欢用DPI的原因主要是因为如果代码里有不太安全的地方(比如C代码里你不是在堆上而是在栈上开了一个大数组,或者C和SV之间的参数传递写法不合理),很容易造成coredump。而且你也不确定到底是SV写的不安全还是C写的不安全。另外,有些大公司的算法源代码是不提供的,只给你一个.o文件,这样coredump了你debug起来会让你有砍人的冲动。
但是不用DPI也带来一些坏处:
1)
要自己写一些wrapper之类的代码
2)
静态变量处理要小心。举个例子:我是每帧调一次systemf来做比对,某个函数每次比对会被调用一次。函数里的静态变量就没什么静态的意义了。如果不做修改的话,肯定会出错。一般是要求算法组尽量少用静态变量,非用不可的话,我们会把静态变量改成全局变量,然后让systemf多一个参数。
要说明的是:DPI“天然”的就是tb的一部分。但是我觉得把时间浪费在debug 算法C代码的优劣上是一件很不值得的事情(无论什么时候都是schedule优先),当然我也很佩服有些人对任何事情都“精益求精”的态度。
无论用不用DPI,你都可以使用DDD(wolf评论:what?)这类debug工具。DDD这种工具在非DPI情况下用起来会更加的得心应手。
Q:Force要不要用?
A:有的人比较抵触用Force-release,觉得如果写的不注意的话,可能会浪费时间(debug或者re-compile)。个人觉得“规定所有人把各自模块的force语句写在一个文件里,然后再被一个统一的force_prj.sv include进去,并且include前要有`ifdef保护起来”应该可以规避掉一些风险。
Q:IP要不要验证?
A:首先是去找业界口碑好的IP(个人觉得对数字IP来说silicon-validition一样重要)。人手不够的时候,可以考虑让FPGA多承担一些IP的验证,对于IP里一些FPGA无法cover到的测试功能点,可以考虑用直接testcase的方法覆盖。
Q:遗漏bug怎么办
A:开发过程(FPGA)乃至最终silicon-validition甚至已经产品化后都可能发现遗漏的bug,要重视这些被仿真遗漏掉的bug。要一个一个的做case-analysis,仔细的分析为什么testbench没有抓到这样的问题。而且对于TO(wolf评论:I see!Tap-Out!)以后发现的Bug,要在下一版里重点review,以保证不犯同样的错误。另外,对于每个bug都应该尽量加一条对应的assertion。
Q:分享的氛围。
A:我个人觉得验证的范围很广,一个人很难把各个方面都搞的很精通。经常的技术讨论和培训是非常有必要的。Team-leader应该营造一个很好的技术分享的氛围。
Q : 如何定位bug
X和Z,所对应的Bug,可能有如下几种:
1、 IP(包括Memory、PLL、Serdes等等)例化时,某些信号悬空未接。也许某些模型允许Power信号悬空,或者某些信号是悬空给DFT处理(当下给DFT处理的信号是接零),但大多数IP,输入信号是不可悬空的;
2、 信号位宽不匹配、信号多驱动、声明的信号名称写错、TB级互联错误或TB中遗漏的Force(额外小心隐藏的Force),不要相信nLint,特别是在芯片顶层或
3、 后仿真时序不满足时的X态传递;
4、 功能错误,某些模拟IP未能正确操作;
5、 功能错误,导致管脚冲突;
6、 功能错误,未能合理使用无复位端的寄存器和未初始化的Memory。
再看时钟。
很多验证人员不看时钟。经过我反复的证明,这是一个非常正确的结论(经常在项目验证后期协助定位时钟不对齐导致的环境问题)。只要TC能够打印Pass,很多验证人员不关心时钟是否有问题(甚至很多新验证人员,根本不明白∆ Delay的概念)。大多数情况下,时钟不会有问题?No,大多数情况下,系统验证,时钟都有问题。
怎样看波形:
如何在一个看似无限复杂的挂死波形中定位根因?
如何在后仿波形中发现可能的问题?
如何在表面上没有问题的波形中发现问题?
面对波形,首先要端正心态,不要认为看波形是浪费时间,也不要因为一时无法发现其中的问题而焦虑烦躁,更不要盲目乐观,认为已经没有任何问题。要执着、坚定,充满勇气。
先不要看波形,对,先不要看,这是我很重要的经验之一。要先思考,我的做法是对照架构图,虚拟一个芯片运转的场景,即在脑海中想像一下当前这个激励下,波形应当是怎样运作的,激励怎样进入系统,然后怎样完成协议解析和转换,怎样到达了总线,然后出现DDR的吞吐,然后CPU取指、取数,完成处理。OK,也就是说,先要在心中预留一个完美的Scenario,设想一下白雪公主和王子是怎样在城堡中幸福生活在一起的。
心中有了虚构的波形后,再使用Verdi打开波形。抓关键信号,分组,标识不同颜色,这些奇技淫巧应该不用多说,很多兄弟都比我这个验证原旨主义者来得厉害。只是需要说明的是,抓多少信号,怎样分组,很需要斟酌。其实原则只有一个,让尽可能精炼的信号在一屏内显示,这和代码的精简是一个道理。信号除了按功能分类,还要按信息量分权重。所以还是要说,很多验证人员,用着花哨的手指技法,一屏一屏的信号抓,刷刷几屏下来,跟瀑布一样,很是壮观,往往Group的数量比我总共抓的波形数量还要多。操,看个AXI总线,把arlock信号和arvalid信号一起抓出来,除了催眠看波形的人之外,有其他意思吗?以AMBA总线为例,APB先看PADDR、PSEL、PENABLE,AHB先看HADDR、HTRANS、HREADY,AXI先看各个通道ADDR、VALID、READY,如果这些信号不能说明问题,再逐步增加辅助信号观察,尽量保证在一屏中显示所有有效信号,如果信号太多,宁可删除部分。
然后,将展开的波形和脑海中已有的场景进行对照,看数据流是否按照脑海中预期的构想而流动。一般来说,实际波形和预想都不太能够对上,最开始的大多数情况下,波形是正确的,而脑海中的预想存在不足,这主要是因为我自己对架构的细节理解还不充分,对某些特殊逻辑处理方式不熟悉,或者某些逻辑相互连接后新增的耦合关系不了解等等原因导致。而这个时候,在我看来,也正是一个最好的时机,来进一步熟悉和理解芯片真实运转流程,弥补自己对系统结构、互联设计中各个细节的理解不足。在对细节的进一步理解和澄清的过程中,我会逐步修正心中虚构的波形,使其逐渐接近真实的运作。当然,在修正过程中,会出现某些确实表现异常的波形,一些明显出乎设计预期的时序出现。OK,这是一个岔路口,先记录*.rc波形现场,然后对该出乎意料的时序进行进一步深入追溯。正如前面所述,我常常在已经Pass的波形(或后仿波形)中发现Bug,通常都是从这样的岔路口开始的。也许这个岔路口最终证明逻辑没有问题,还是细节理解不足导致,但也许就是一个芯片难以发现的致命缺陷。
看到这里,也许有同志会问,挂死的波形呢?怎么还没追挂死的点呢?Yes,就是还没开始,无论是挂死的波形,Fail的波形,还是Pass的波形,在其实际波形和我大脑中虚构的波形没有完全吻合之前,我是不会开始定位问题的。这简直是浪费时间?嗯,在最开始定位的阶段确实如此,但在验证进入中后期之后,正常的波形和我虚构的波形已经调频到一个波段了,或者说,我已经确认白雪公主和王子开始幸福生活了。和波形到手,从前到后一扫,寻找那些地方异常,例如,白雪公主生下来的小王子永远长不高,那明显就是有问题嘛。然后,半小时发现问题,并不困难。当然,还是要说,我的经验,是不适合那些平时就只看Log,忽视波形的人的。
最后,我还是共享一些我定位复杂挂死波形的根因的经验。起点,定位挂死的起点在那里?或者说,从那里开始追?很多同志认为寻找一个合适的起点很重要,或者说最好直接就找到引发挂死的点。我说,No!!找到直接引发挂死的点,或者和该点直接相关的起点,是很困难的,我不做这种类似分析双色球中奖率的事情,任何挂死的波形,第一时间能够获得的信息,都是表象。我会将任意一个被阻塞的操作作为起点,开始我溯溪的旅途(请确信,无论那个溪流,最终都会汇到唯一的源头)。如有可能,用笔在沿途做下记号,保证在偏离方向的时候能够返回。溯溪的路途有艰辛、险阻,我看过太多的兄弟在中途放弃,或另寻他路,而有时候,他离最终的源头,仅一步之遥,所以,最后一个建议,请保持一颗坚定和勇敢的心。有一首我喜欢的歌,范玮琪的《最初的梦想》,艰难的时候,可以听一下。
最最后,再补充一点后仿定位的思路,供参考。
1、 还是先关注时钟,每一个模块,clk和clken相位是否正确(PR有时会对时钟取反,需要注意);
2、 关注有门控功能的时钟和复位,确认是否存在毛刺;
3、 把Top层所有管脚和oen、I、C信号抓出来。除掉红色黄色,观察有特殊变化的oen、i、c信号,尤其是和管脚值不符的,还有毛刺;
4、 观察所有异步接口的时序,基本上都会发现毛刺。例如EBI、Efuse,确认毛刺是否影响功能;
5、 观察顶层或Subsys独立处理的信号,特别针对还不够成熟的集成人员的特殊设计,例如testmode、rst_out、系统控制器特殊的配置和检测信号;
6、 关注跨团队的模块,例如功能可控的Memory BIST;
7、 以上所有这些,MAX和MIN会有不同,要仿真Typical时序,并且确认以上的内容;
8、 后仿的波形,需要结合Log中的Warning一起Check。
一些建议:
项目经理(或验证经理),建议在看测试报告的同时,也要看人。即使都是符合交付流程的测试报告,不同的人交付,其背后的含义都是不一样的。新员工往往注重形式而不清楚其内涵,老员工往往以完成为目的而不注重形式,有的同志会忽视条件覆盖率而只关注TC和代码行的覆盖,有的同志思考问题过于理想,以至于主动避开一些Corner Case,还有的同志重随机而轻直接,或重直接而轻随机。这些都是需要进行识别和分析的。流程解决不了这些问题,即使包括评审,亲身经历。如何进行识别呢?我的一个建议是做对比,将多份报告同时打开,多份验证环境同样打开,相互对比,分析其中的差异。这一点,在流程中,是没有的,而且,基本上,验证人员本身也都很少主动进行这种对比的。