POJ-1664 放苹果

Description

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

Input

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

Output

对输入的每组数据M和N,用一行输出相应的K。

Sample Input

1
7 3

Sample Output

8
8    解题分析:
 9         设f(m,n) 为m个苹果,n个盘子的放法数目,则先对n作讨论,
10         当n>m:必定有n-m个盘子永远空着,去掉它们对摆放苹果方法数目不产生影响。即if(n>m) f(m,n) = f(m,m)  
11         当n<=m:不同的放法可以分成两类:
12         1、有至少一个盘子空着,即相当于f(m,n) = f(m,n-1);  
13         2、所有盘子都有苹果,相当于可以从每个盘子中拿掉一个苹果,不影响不同放法的数目,即f(m,n) = f(m-n,n).
14         而总的放苹果的放法数目等于两者的和,即 f(m,n) =f(m,n-1)+f(m-n,n) 
15     递归出口条件说明:
16         当n=1时,所有苹果都必须放在一个盘子里,所以返回1;
17         当没有苹果可放时,定义为1种放法;
18         递归的两条路,第一条n会逐渐减少,终会到达出口n==1; 
19         第二条m会逐渐减少,因为n>m时,我们会return f(m,m) 所以终会到达出口m==020 */
21 #include<stdio.h>
22 
23 int fun(int m,int n)  //m个苹果放在n个盘子中共有几种方法
24 {
25     if(m==0||n==1)  //因为我们总是让m>=n来求解的,所以m-n>=0,所以让m=0时候结束,如果改为m=1,
26         return 1;    //则可能出现m-n=0的情况从而不能得到正确解    
27     if(n>m)
28         return fun(m,m);
29     else
30         return fun(m,n-1)+fun(m-n,n);
31 }
32 
33 int main()
34 {
35     int T,m,n;
36     scanf("%d",&T);
37     while(T--)
38     {
39         scanf("%d%d",&m,&n);
40         printf("%d\n",fun(m,n));
41     }
42 }

 


 

posted @ 2014-01-15 11:49  kin2321  阅读(217)  评论(0编辑  收藏  举报