学习GraphX
首先准备如下社交图形数据:
打开spark-shell;
导入相关包:
import org.apache.spark._ import org.apache.spark.graphx._ import org.apache.spark.rdd.RDD
创建如上graph对象:
// Create an RDD for the vertices val users: RDD[(VertexId, (String, Boolean))] = sc.parallelize(Array((1L, ("Li Yapeng", true)), (2L, ("Wang Fei", false)), (3L, ("Xie Tingfeng", true)), (4L, ("Zhang Bozhi", false)), (5L, ("Chen Guanxi", true)))) // Create an RDD for edges val relationships: RDD[Edge[String]] = sc.parallelize(Array(Edge(1L, 2L, "spouse"), Edge(2L, 3L, "spouse"), Edge(3L, 4L, "spouse"), Edge(4L, 5L, "friend"), Edge(3L, 5L, "friend"))) // Define a default user in case there are relationship with missing user val defaultUser = ("Who?", false) // Build the initial Graph val graph = Graph(users, relationships, defaultUser)
尝试打印出所有的男艺人:
graph.vertices.filter(_._2._2).collect res8: Array[(org.apache.spark.graphx.VertexId, (String, Boolean))] = Array((1,(Li Yapeng,true)), (3,(Xie Tingfeng,true)), (5,(Chen Guanxi,true)))
按焦点程度逆序打印出艺人的ID:
graph.degrees.sortBy(_._2,false).collect res12: Array[(org.apache.spark.graphx.VertexId, Int)] = Array((3,3), (2,2), (4,2), (5,2), (1,1))
但是没办法知道艺人的名字,join一下:
graph.degrees.leftJoin(graph.vertices)((vid, vd1, vd2)=>(vd2.get._1,vd1)).sortBy(_._2._2, false).collect res35: Array[(org.apache.spark.graphx.VertexId, (String, Int))] = Array((3,(Xie Tingfeng,3)), (2,(Wang Fei,2)), (4,(Zhang Bozhi,2)), (5,(Chen Guanxi,2)), (1,(Li Yapeng,1)))
直接拿vd2.get有点冒险,下面改成安全版本:
graph.degrees.leftJoin(graph.vertices)((vid, vd1, vd2)=>(vd2 match {case Some(vvd2) => (vvd2._1, vd1); case None => ("", vd1)})).sortBy(_._2._2, false).collect
测试一下消息机制,发送配偶信息给每个人:
graph.aggregateMessages({ (ctx:EdgeContext[(String, Boolean),String,String])=> if(ctx.attr=="spouse"){ ctx.sendToSrc(ctx.dstAttr._1); ctx.sendToDst(ctx.srcAttr._1) } }, ((s1:String,s2:String)=>s1+"|"+s2)).collect res46: Array[(org.apache.spark.graphx.VertexId, String)] = Array((1,Wang Fei), (2,Li Yapeng|Xie Tingfeng), (3,Wang Fei|Zhang Bozhi), (4,Xie Tingfeng))
输出pagerank值:
import org.apache.spark.graphx.lib graph.pageRank(0.01).vertices.collect.foreach(println) (1,0.15) (2,0.27749999999999997) (3,0.38587499999999997) (4,0.313996875) (5,0.58089421875)
数一数每个艺人所处的三角关系:
graph.triangleCount.vertices.collect res48: Array[(org.apache.spark.graphx.VertexId, Int)] = Array((1,0), (2,0), (3,1), (4,1), (5,1))
+++++++++++++++++++++++++++++++++++++++++++
如本文存在任何侵权部分,请及时告知,我会第一时间删除!
转载本博客原创文章,请附上原文@cnblogs的网址!
QQ: 5854165 我的开源项目 欢迎大家一起交流编程架构技术&大数据技术! +++++++++++++++++++++++++++++++++++++++++++
如本文存在任何侵权部分,请及时告知,我会第一时间删除!
转载本博客原创文章,请附上原文@cnblogs的网址!
QQ: 5854165 我的开源项目 欢迎大家一起交流编程架构技术&大数据技术! +++++++++++++++++++++++++++++++++++++++++++