高等数学·不定积分、定积分与反常积分

不定积分、定积分与反常积分

不定积分

一、不定积分概念

1.定义

(1)IxF(x)=f(x),F(x)f(x)I(2)f(x)I,f(x)I,f(x)dx(3)线[αf(x)+βg(x)]dx=αf(x)dx+βg(x)dx

2.计算

(4){1.2.线3.{1.2.

(1)第一换元法(凑微分)

(5)F(u)=f(u),f(Φ(x))Φ(x)dx=f(Φ(x))d(Φ(x))=F(Φ(x))+C(6)Φ(x)dx=d(Φ(x))

常见凑微分:

(7)1.f(ax+b)dx=1af(ax+b)d(ax+b)(a0)(8)eg1.sin(2x+3)dx=12sin(2x+3)d(2x+3)=12cos(2x+3)+C(9) 2.f(axn+b)xn1dx=1naf(axn+b)d(axn+b)(10)eg2.cos(2x4+3)x3dx=142cos(2x4+3)d(2x4+3)=18cos(2x4+3)+C(11)3.f(ax+c)axdx=1lnaf(ax+c)d(ax+c)(12)eg3.sin(2x+3)2xdx=1ln2sin(2x+3)d(2x+3)=1ln2cos(2x+3)(13)4.f(1x)1x2dx=f(1x)d(1x)(14)eg4.ln(1x)1x2dx=ln(1x)d(1x)+C(15)5.f(ln|x|)1xd(x)=f(ln|x|)d(ln|x|)(16)eg5.sin(ln|x|)1xdx=sin(ln(|x|)d(ln|x|)=cos(lnx)+C(17)6.f(x)1xdx=2f(x)d(x)(18)7.f(sinx)cosxdx=(sinx)d(sinx)(19)8.f(cosx)sindx=f(cosx)d(cosx)(20)9.f(tanx)sec2xdx=f(tanx)d(tanx)(21)10.f(cotx)csc2xdx=f(cotx)d(cotx)(22)11.f(arcsinx)11x2dx=f(arcsinx)d(arcsinx)(23)12.f(arccosx)(11x2)dx=f(arccosx)d(arccosx)(24)13.f(arctanx)11+x2dx=f(arctanx)d(arctanx)(25)14.f(x2+a)xx2+adx=f(x2+a)d(x2+a)(26)(x2±a)=xx2+a,(a2x2)=xa2x2

(2)第二换元法

(27)F(u)=f(Φ(u))Φ(u),(28)f(x)dx=x=Φ(u)f(Φ(u))Φ(u)du=F(u)+C=F(Φ1(x))+C(29)x=Φ(u)

1)三角换元

(30)x=asinu,x=atanu,x=asecu(31)a2x2=x=asinuacosu,u[π2,π2],x[a,a](32)a2+x2=x=atanuasecu,u(π2,π2),x(,)(33)x2a2=x=asecuatanu,u(π2,π](0,π2]

2)倒变换

(34)x=1u1x

3)指数(或对数)变换

(35)ax=ux=lnulnaax

4)用于有理化的变换

(36)1x+x3x=u6(37)ax+bcx+dnu=ax+bcx+dnx=dunbcuna

(3)分部积分法

(38)u(x)v(x)dx=u(x)d(v(x))=u(x)v(x)v(x)u(x)dx(39)u(x),v(x)

1)降幂法

(40)xneaxdx,xnsinaxdx,xncosaxdx(41)u(x)=xn

2)升幂法

(42)xalnxdx,xaarcsinxdx,xaarccosxdx,xaarctanxdx(43)u(x)=lnx

3)循环法

(44)eaxsinaxdx,eaxcosaxdx(45)u(x)=eaxsinax

4)递推公式法

(46)nInIn=f(In1)f(In2)

定积分

一、定积分概念

1.定义

(47):f(x)[a,b](48)(1)[a,b]n[xi1,xi](49)(2)[xi1,xi]ξi,i=1nf(ξi)Δxi,λ=maxΔx1,Δx2,...,Δxn(50)(3)limλ0i=1nf(ξi)Δx\exist,[a,b]ξi,f(x)[a,b],(51)abf(x)dx=limλ0f(ξ)Δxi(52)(53)(1)λ0→↚n(54)(2),[a,b],x(55)abf(x)dx=abf(t)dt(56)(3)01f(x)dx\exist,[0,1]nΔxi=1n,ξi=in,(57)01f(x)dx=limλ0i=1nf(ξi)Δxi=limni=1nf(in)

(58)abf(x)dx=limλ0i=1nf(ξi)Δi={limni=1nf(a+(i1)ban)ban,limni=1nf(a+iban)ban,(59)Φi=a+(i1)ban+ba2n

image-20210613172601984

定理:(线性)

(60)[αf(x)+βg(x)]dx=αf(x)dx+βg(x)dx

注解:积分无小事

(61)e±x2dx,sinxx(62)F(x)=f(x),xI,(63)[F(x)+C]=f(x)

2.定积分存在的充分条件

(64)f(x)[a,b],abf(x)dx(65)f(x)[a,b],,abf(x)dx(66)f(x)[a,b],abf(x)dx

3.定积分的几何意义

image-20210405155729433

(67)(1)f(x)0,abf(x)dx=S

image-20210405155859329

(68)(2)f(x)0,abf(x)dx=S

image-20210405155556537

(69)(3)f(x)0f(x)0,abf(x)dx=S1+S3S2

注解:

(70)1f(x)0,,[a,b],y=f(x)(71)2f[a,b],(72)abf(x)dx=abf(t)dt(73)3abdx=ba(74)4aaf(x)=0,abf(x)dx=baf(t)dt

二、定积分的性质

1.不等式性质

(75)(1)[a,b]f(x)g(x),abf(x)dxabg(x)dx(76)(77)(1)f(x)0,x[a,b],abf(x)dx0(78)(2)f(x)0,x[a,b],[c,d][a,b],abf(x)dxcdf(x)dx(79)(3)|abf(x)dx|ab|f(x)|dx(80)|f|f|f|ab|f|abfab|f||abf|ab|f|(81)x2x3,x[0,1],01x3dx01x2dx

(82)(4)()Mmf(x)[a,b],(83)m(ba)abf(x)dxM(ba)

geogebra-export

(84)M(ba)=SAFDC=S1+S2+S3(85)m(ba)=SEBDC=S3(86)abf(x)dx=SADBC=S2+S3(87)S3S2+S3S1+S2+S3(88)m(ba)abf(x)dxM(ba)

(89)(3)|abf(x)dx|ab|f(x)|dx

2.中值定理

(90)(1)f(x)[a,b],abf(x)dx=f(ξ)(ba),(a<ξ<b)(91)1baabf(x)dxy=f(x)[a,b](92)F(x)=f(x),F(b)F(a)=abf(x)dx,f(ξ)(ba)=F(ξ)(ba)(93)(2)f(x),g(x)[a,b]g(x),abf(x)g(x)dx=f(ξ)abg(x)dx

注解:

(94)01xsinxdx(95)f(x)={xsinx,x[0,1]1,x=0(96)(97)f(x)={x+1,[1,2]x,[0,1](98)02f(x)dx=01xdx+12(x+1)dx

(99)1201211xndxπ6(100)x[0,12](101)

例题:

(102)1.limn01xnex1+exdx(103)0xnex1+exxn,x[0,1],nN(104)(105)001xnex1+exdx01xndx=1n+1(106)(107)limn1n+1=0(108)limn01xnex1+exdx=0

(109)2.I1=04πtanxxdx,I2=04πxtanxdx(110)(A)I1I21(B)1I1I2(C)I2I11(D)1I2I1(111)a<b,f(x)g(x),abf(x)abg(x)(112)tanxx,x[0,π2](113)tanxx1xtanx,x[0,π4](114)(115)0π4tanxxdx0π41dx=π40π4xtanx,x[0,π4](116)0π4tanxx1(117)(118)0π4tanxx=f(ξ)(π40)=tanξξπ4,ξ[0,π4](119)tanxxx[0,π4](120)0<f(ξ)<4π,0<0π4tanxx<1(121)(B)

三、积分上限函数

image-20210405152647772

(122)f(x)[a,b],Φ(x)=abf(t)dt[a,b],abf(t)dt)(123)(axf(t)dt)=f(x),(ax2f(t)dt)=f(x2)2x(124)f(x)[a,b],ϕ1(x),ϕ2(x),Φ(x)=abf(t)dt[a,b],(ϕ1(x)ϕ2(x)f(t)dt)(125)=f[ϕ2(x)]ϕ2(x)f[ϕ1(x)]ϕ1(x)=(ϕ1(x)0f(t)dt+ϕ2(x)0f(t)dt)(126)f(x)[l,l],(127)f(x),0xf(t)dt(128)f(x),0xf(t)dt

(129)x[a,b),Δx0,使x+Δx[a,b)(130)ΔFΔx=F(x+Δx)F(x)Δx=1Δx[ax+Δxf(t)dtaxf(t)dt]=1Δxxx+Δxf(t)dt=f(x+σΔx)f(x)(Δx0+)

推论:

(131)f(x)ϕ(x)ψ(x)[a,b],(132)(1)(aϕ(x)f(t)dt)=f(ϕ(x))ϕ(x)(133)(2)(bψ(x)f(t)dt)=f(ψ(x))ψ(x)(134)(3)(ψ(x)ϕ(x)f(t)dt)=f(ϕ(x))ϕ(x)f(ψ(x))ψ(x)

例题

(135)1.f(x)R,,.f(x)(136)(137)F0(x)0xf(t)dt,xR(138)F0(x)=0xf(t)dt=t=u0xf(u)d(u)=0xf(u)du=F0(x)F0(x)

(139)(140)(1)F(x)=xexf(t)dt(141)(2)F(x)=0x2(x2t)f(t)dt(142)(3)F(x)=0xf(x2t)dt(143)(4)y=y(x){x=1+2t2y=11+2lnteuudu(t1),d2ydx2|x=9(144):(145)(1)F(x)=(xexf(t)dt)=f(ex)(ex)f(x)(146)(2)F(x)=(0x2(x2t)f(t)dt)=(0x2x2f(t)dt0x2tf(t)dt)(147)=2x0x2f(t)dt+x2f(x2)2xx2f(x2)2x=2x0x2f(t)dt(148)(3)F(x)=0xf(x2t)dt=120xf(x2t2)d(x2t2)=u=x2t2120xf(u)du(149)F(x)=12f(x2)2x=xf(x2)(150)(4)dydx=e1+2lnt1+2lnt2t4t2=e2(1+2lnt)(151)d2ydx2=d(dydx)dx=e2(2t(1+2lnt)2)14t

(152)2.:(153)(1)f(x)=0xsintπtdt,0πf(x)dx(154):(155)0πf(x)dx=0π0xsintπtdt dx(156)=x0xsintπt|0π0πxsinxπxdx(157)=π0πsinxπt+0π[(πx)π]sinxπxdx=0πsinxdx=2(158)(2)limx(0xet2dt)20xe2t2dt=limx(20xet2dt)ex2e2x2=limx20xet2ex2=limx12x=0$$

\begin{align}
&(3)设f(x)连续,\phi(x)=\int_0^1{f(tx)dt},且\lim_{x\rightarrow0}\frac{f(x)}{x}=A(常数),求\phi'(x)并讨论\phi'(x)在x=0处的连续性\
&当x\neq0时\
&令u=tx,t\in[0,1],u=tx\in[0,x],\phi(x)=\int_01f(tx)dt\overset{tx=u}{=}\int_0x{f(u)d(\frac{u}{x})}=\frac{\int_0^xf(u)du}{x}\
&\phi'(x)=\frac{xf(x)-\int_0xf(u)du}{x2}\
&当x=0时,f(0)=0,\phi(0)=f(0)=0,\phi'(0)=\lim_{x\rightarrow0}\frac{\phi(x)\phi(0)}{x-0}=\lim_{x\rightarrow0}\frac{\int_0xf(u)du}{x2}=\lim_{x\rightarrow 0}\frac{f(x)}{2x}=\frac{1}{2}A\
&\lim_{x\rightarrow0}\phi'(x)=\lim_{x\rightarrow 0}{\frac{xf(x)-\int_0xf(u)du}{x2}}=A-\frac{1}{2}A=\frac{1}{2}A=\phi'(0)\Leftrightarrow\phi'(x)在x=0处连续\
\end{align}

\begin{align}
&注意变限积分进行正逆运算时上下限的映射\
&例如F(x)=\int_0x{f(t)dt}\overset{t=-u}{=}\int_{-a}f(-u)d(-u)\
\end{align}

### 四、定积分的计算 #### 1.牛顿莱布尼茨公式

\int_abf(x)dx=F(x)|_ab=F(b)-F(a)

#### 2.换元积分法

\int_abf(x)dx=\int_\alpha\beta{f(\Phi(t))\Phi'(t)dt}

#### 3.分部积分法

\int_abudv=uv|_ab-\int_a^bvdu

#### 4.奇偶性和周期性

\begin{align}
&直接使用奇偶性周期性定义证明\
&(1)设f(x)为[-a,a]上的连续函数(a0),则\
&\int_{-a}{a}f(x)dx={0,f(x)\20af(x)dx,f(x)\
&证:\int_{-a}0{f(x)dx}\overset{x=-t}{=}\int_0a{f(-t)d(-t)}=-\int_{0}{a}f(t)d(t)=-\int_0a{f(x)dx}\
\end{align}

\begin{align}
&(2)设f(x)是以T为周期的连续函数,则对\forall A,有\int_a{a+T}f(x)=\int_0T{f(x)dx}\
&\int_a{a+T}f(x)dx\overset{x=a+t}{=}\int_0T{f(a+t)d(a+t)}=\int_0^{a+t}f(a+t)dt\
\end{align}

(159)Φ:x[a,b]y[c,d],xaba=ycdc,y=c+dcba(xa) \

![image-20210617160041903](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/image-20210617160041903.jpg) #### 5.奇偶函数积分后的奇偶性(奇偶函数求导后的奇偶性) ##### 1.奇偶函数求导后的奇偶性

(160)(1)f(x): f(x)=f(x) f(x)(1)=f(x) f(x)=f(x) f(x) (2)f(x): f(x)=f(x) f(x)=f(x) f(x)(1)=f(x) f(x)=f(x) f(x) 

##### 2.奇偶函数求积分后的奇偶性

(161)F(x)f(x) (1)f(x): f(x)=f(x) f(x)dx=f(x)dx f(x)d(x)=f(x)dx F(x)=F(x) F(x) (2)f(x): f(x)=f(x) f(x)dx=f(x)dx f(x)d(x)=f(x)dx F(x)=F(x) F(x) 

##### 3.奇偶函数复合后的奇偶性

(162)\existf(x),g(x),F(x)=f(g(x)) f(x) (1)g(x) F(x)=f(g(x))=f(g(x))=F(x),F(x) (2)g(x) F(x)=f(g(x))=f(g(x))=f(g(x))=F(x),F(x) f(x) (1)g(x) F(x)=f(g(x))=f(g(x))=F(x),F(x) (2)g(x) F(x)=f(g(x))=f(g(x))=F(x),F(x) :, 

\begin{align}
&1.设M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\frac{\sin x}{1+x2}\cos4xdx},N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sin x3+\cos4x)dx},P=\int_{-\frac{\pi}{2}}{\frac{\pi}{2}}(x2\sin3x-\cos4x)dx,则\
&(A)N<P<M(B)M<P<N(C)N<M<P(D)P<M<N\
&根据对称性判断\
&M:f_M(x)为奇函数,F_M(x)为偶函数\
&N:N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sin x3+\cos4x)dx}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin 3xdx+\int_{-\frac{\pi}{2}}{2}}\cos ^4xdx\
&\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin 3xdx=0,\int_{-\frac{\pi}{2}}{2}}\cos ^4xdx\geq 0,\Rightarrow N\geq 0\
&P:P=\int_{-\frac{\pi}{2}}{\frac{\pi}{2}}(x2\sin3x-\cos4x)dx=\int_{-\frac{\pi}{2}}{\frac{\pi}{2}}x2\sin3xdx-\int_{-\frac{\pi}{2}}{2}}\cos^4xdx\
&\int_{-\frac{\pi}{2}}{\frac{\pi}{2}}x2\sin3xdx=0,\int_{-\frac{\pi}{2}}{2}}\cos^4xdx\geq0,\Rightarrow P\leq0\
&\Leftrightarrow P<M<N,\space\space选(D)\
\end{align}

\begin{align}
&2.设f(x)=\begin{cases}&kx,0\leq x\leq \frac{1}{2}a\&c,\frac{1}{2}a<x\leq a\end{cases},求F(x)=\int_0^xf(t)dt,x\in[0,a]\
&F(x)=\begin{cases}&\int_0xktdt=\frac{1}{2}kt2|_0x=\frac{1}{2}kx2,0\leq x\leq \frac{1}{2}a\&\int_0{\frac{1}{2}a}ktdt+\int_{\frac{1}{2}a}c cdt=\frac{1}{8}ka2+c2-\frac{1}{2}ac,\frac{1}{2}a<x\leq a\end{cases}\
\end{align}

(163)3.02πf(|cosx|)dx=40π2f(|cosx|)dx 

![1111](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/e0e1f27ff16b0cf00a8f3d155bfc3423.jpg) #### 6.已有公式

\begin{align}
&(1)\int_0{\frac{\pi}{2}}{\sinnxdx=\int_0{\frac{\pi}{2}}\cosn xdx=\begin{cases}\frac{n-1}{n}\frac{n-3}{n-2}...\frac{1}{2}\frac{\pi}{2},&n为偶数\frac{n-1}{n}\frac{n-3}{n-2}...*\frac{2}{3},&n为大于1的奇数\end{cases}}\
&(2)\int_0^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx(f(x)为连续函数)\
\end{align}

#### 7.与定积分有关的证明 #### 8.经典例题: ##### 例题1:

\begin{align}
&\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}\
&法1:夹逼定理+基本不等式\
&\frac{1}{1+x}<\ln(x+1)<x\
&令x=\frac{1}{n}\
&得\frac{1}{n+1}=\frac{\frac{1}{n}}{\frac{1}{n}+1}<\ln(\frac{1}{n}+1)=\ln(n+1)-\ln(n)<\frac{1}{n}\
&得\frac{1}{n+2}<ln(n+2)-ln(n+1)<\frac{1}{n+1}\
&得\frac{1}{n+n}<\ln(n+n)-\ln(n+n-1)<\frac{1}{n+n-1}\
&得\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}<ln(2n)-ln(n)=ln2\
&法2:\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}中\
&\frac{1}{n+1}中n为主体,1为变体\
&\frac{变体}{主体}\rightarrow^{n \rightarrow{\infty}}{0,()\A0,()\
&\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}{f(\xi_i)\Delta x_i}=\lim_{n\rightarrow \infty}\frac{1}{n}\sum_{i=1}{n}f(\xi_i)(b-a)}=\int_01\frac{1}{1+x}=\ln(1+x)|_{0}^{1}=\ln2\
\end{align}

##### 例题2

\begin{align}
&设f(x)=\int_0^{\pi}{\frac{\sin x}{\pi-t}dt},计算\int_0^{\pi}f(x)dx.\
&法1:分部积分+换元法\
&原式=xf(x)|_0{\pi}-\int_0dx}\
&=\pi{\int_0{\pi}{\frac{\sin{t}}{\pi-t}dt}-\int_0{\pi-x}}dx}\
&=\int_0^{\pi}{\frac{(\pi-x)\sin x}{\pi-x}dx}=2\
&法2:\
&原式=\int_0\pi{f(x)d(x-{\pi})}=(x-\pi)f(x)|_0-\int_0^{\pi}{\frac{(x-\pi)\sin x}{\pi-x}dx}=2\
&法3:二重积分转化为累次积分\
&原式=\int_0{\pi}{\int_0\frac{x\sin t}{\pi-t}dt}dx\
\end{align}

##### 例题3 ![img](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/AN%L6IJ6TF[%1UB3OUWMRCR.jpg) ![123](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/123.jpg)

(164)1 f(1)=f(1)=1,f(0)=1f(x),f1 f(x)=2x21 2

![image-20210408160543049](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/image-20210408160543049.jpg) ##### 例题4 ![img](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/Q8%7DOT_25(HC79%5BS_21)AZZK.jpg)

\begin{align}
&因为\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_bx{\frac{\ln{1+t3}}{t}dt}}}=c(c\neq 0)\
&所以\lim_{x\rightarrow 0}{ax-\sin x}=0并且\lim_{x \rightarrow 0}{\int_bx{\frac{\ln{1+t3}}{t}dt}}=0\
&化简,使用洛必达法则上下求导\
&\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_bx{\frac{\ln{1+t3}}{t}dt}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{\frac{\ln{1+x^3}}{x}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{x^2}}\
&\Rightarrow a=1,c=\frac{1}{2},b=0\
\end{align}

## 反常积分 ### 一、无穷区间上的反常积分

\begin{align}
&(1)\int_a^{+\infty}{f(x)}dx=\lim_{t\rightarrow +\infty}{\int_{a}^{t}f(x)dx}\
&(2)\int_{-\infty}^{b}{f(x)}dx=\lim_{t\rightarrow -\infty}{\int_{t}^{b}f(x)dx}\
&(3)\int_{-\infty}{0}{f(x)}dx和{\int_{0}f(x)dx}都收敛,则{\int_{-\infty}^{+\infty}f(x)dx}收敛\
&且{\int_{-\infty}{+\infty}f(x)dx}=\int_{-\infty}dx+{\int_{0}^{+\infty}f(x)dx}\
&如果其中一个发散,结果也发散\
&常用结论:\int_a{+\infty}{\frac{1}{xp}dx}\begin{cases}&p1,收敛\&p\leq1 ,发散\end{cases},(a0)\
\end{align}

### 二、无界函数的反常积分

\begin{align}
&如果函数f(x)在点a的任一领域内都无界,那么点a为函数f(x)的瑕点(也称为无界点).无界函数的反常积分也成为瑕积分\
&(1)设函数f(x)在(a,b]上连续,点a为f(x)的瑕点.如果极限\lim_{t\rightarrow a+}{\int_{t}{f(x)dx}}\exist,\
&则称此极限为函数f(x)在区间[a,b]上的反常区间,记作\int_{a}{b}f(x)dx,即\int_{a}f(x)dx=\lim_{t\rightarrow a+}{\int_{t}{f(x)dx}}\
&这时也称反常积分\int_ab{f(x)dx}收敛,如果上述极限不存在,则反常积分\int_ab{f(x)dx}发散\
&(2)设函数f(x)在[a,b)上连续,点b为函数f(x)的瑕点,则可以类似定义函数f(x)在区间[a,b]上的反常积分\int_a^bf(x)dx=\lim_{t\rightarrow b-}{\int_atf(x)dx}\
&设函数f(x)在[a,b]上除点c(a<c<b)外连续,点c为函数f(x)的瑕点,如果反常积分\int_ac{f(x)dx}和\int_cb{f(x)dx}都收敛\
&则称反常积分\int_ab{f(x)dx}收敛,且\int_ab{f(x)dx}=\int_ac{f(x)dx}+\int_cb{f(x)dx}\
&如果至少一个发散,则称\int_a^b{f(x)dx}发散\
&常用结论:\
&\int_ab{\frac{1}{(x-a)p}}\begin{cases}&p<1,收敛\&p\geq 1,发散\end{cases}\
&\int_ab{\frac{1}{(x-a)p}}\begin{cases}&p<1,收敛\&p\geq 1,发散\end{cases}\
\end{align}

### 三、例题 ##### 例题1 ![12edsadada](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/12edsadada.jpg)

\begin{align} &\int\frac{1}{\ln^{\alpha}x}d(\ln x)\rightarrow^{\ln x=u}\int{\frac{du}{u^{\alpha+1}}}\begin{cases}&{\alpha-1< 1}\&{\alpha+11}\\end{cases}\Rightarrow 0<\alpha<2\ \end{align}

## 定积分的应用 #### 微元法

(165) 

### 一、几何应用 #### 1.平面图形的面积

\begin{align}
&(1)若平面域D由曲线y=f(x),y=g(x)(f(x)\geq g(x)),x=a,x=b(a<b)所围成,则平面域D的面积为\
&S=\int_a^b{[f(x)-g(x)]dx}\
&(2)若平面域D由曲线由\rho=\rho(\theta),\theta=\alpha,\theta=\beta(\alpha<\beta)所围成,则其面积为S=\frac{1}{2}\int_{\alpha}{\beta}{\rho2(\theta)d\theta}
\end{align}

#### 2.旋转体的体积

\begin{align}
&若区域D由曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成,则\
&(1)区域D绕x轴旋转一周所得到的旋转体体积为V_x=\pi\int_ab{f2(x)dx}\
&(2)区域D绕y轴旋转一周所得到的旋转体体积为V_y=2\pi\int_a^b{xf(x)dx}\
&(3)区域D绕y=kx+b轴旋转一周所得到的旋转体体积为V=2\pi\int_D\int{r(x,y)d\sigma}\
&例如:求y=x,y=x^2在第一象限的封闭图形绕转轴的体积\
\end{align}

![img](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/U1

\begin{align}
&V_x=2\pi\int_D\int yd\sigma=2\pi\int_01{dx}\int_{x2}^{x}ydy\
&V_y=2\pi\int_D\int xd\sigma=2\pi\int_01{dx}\int_{x2}^{x}xdy\
&V_{x=1}=2\pi\int_D\int (1-x)d\sigma\
&V_{y=2}=2\pi\int_D\int (2-y)d\sigma\
\end{align}

#### 3.曲线弧长

\begin{align}
&(1)C:y=y(x),a\leq x\leq b,s=\int_ab{\sqrt{1+y'2}dx}\
&(2)C:\begin{cases}&x=x(t)\&y=y(t)\end{cases},\alpha \leq t\leq \beta,s=\int_{\alpha}{\beta}{\sqrt{x'2+y'^2}dx}\
&(3)C:\rho=\rho(\theta),\alpha \leq \theta\leq \beta,s=\int_{\alpha}{\beta}{\sqrt{\rho2+\rho'^2}dx}\
\end{align}

#### 4.旋转体侧面积

\begin{align}
&曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成的区域绕x轴旋转所得到的旋转体的侧面积为\
&S=2\pi\int_ab{f(x)\sqrt{1+f'2(x)}dx}\
\end{align}

### 二、物理应用 #### 1.压力 #### 2.变力做功 #### 3.引力(较少考) #### 例题1![img](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/X2PPU~%@L@NM4Y}W6GZTT_R.jpg)

\begin{align}
&分析题意可知,该容器由x2+y2=1的圆和x2+(y-1)2=1的偏心圆组成\
&根据图像的对称性可以避免不同表达式带来的困难\
&对圆的小带子进行积分,带子长度为x,积分区间为-1到\frac{1}{2},\int_{-1}^{\frac{1}{2}}{\pi x^2dy}\
&由于图像的对称性,将积分结果乘二\
&(1)V=2\pi\int_{-1}{\frac{1}{2}}{x2}dy=2\pi\int_{-1}{\frac{1}{2}}{(1-y2)dy}=\frac{9\pi}{4}\
\end{align}

![20210419203327](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/

\begin{align}
&(2)W=FS=GS=mgS=\rho VSg\
&上部为W_1=\int_{\frac{1}{2}}{2}(2y-y2)(2-y)dy
\rho g\
&下部为W_2=\int{\frac{1}{2}}_{-1}(1-y2)(2-y)dy*\rho g\
&W=W_1+W_2\
\end{align}

![屏幕截图 2021-04-19 204534](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/%E5%B1%8F%E5%B9%95%E6%88%AA%E5%9B%BE%202021-04-19%20204534.jpg) #### 例题2 ![image-20210419211039410](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/image-20210419211039410.jpg)

\begin{align}
&F_p=PA=\rho ghA\
&将图像分为上部和下部,上部为矩形区域和下部的抛物线围成的面积区域,对其进行依次求解\
&P_1=2\rho gh\int_1^{h+1}{h+1-y}dy=\rho gh^2\
&P_2=2\rho gh\int_0^1{(h+1-y)\sqrt{y}dy=4\rho g(\frac{1}{3}h+\frac{2}{15})}\
&\frac{P_1}{P_2}=\frac{4}{5}\Rightarrow h=2,h=-\frac{1}{3}(舍去)
\end{align}

![1618837868(1)](https://cdn.jsdelivr.net/gh/blueflylabor/images@1.0/1618837868(1).jpg)

posted on   blueflylabor  阅读(61)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!
点击右上角即可分享
微信分享提示