高等数学·多元函数微分学

第四章 多元函数微分学

第一节 基本概念机结论

定义1:(二元函数)

\[\begin{align} &z=f(x,y),(x,y)\in D\subset R^2\\ \end{align} \]

image-20210624214055676

例题

\[\begin{align} &f(x,y)=\arcsin(2x)+\ln y+\frac{\sqrt{4x-y^2}}{\ln{(1-x^2-y^2)}}\\ &解:-1\leq 2x\leq 1,y0,1-x^2-y^20,1-x^2-y^2\neq1,4x-y^2\geq0\\ &D=\{(x,y)|-\frac{1}{2}\leq x\leq\frac{1}{2},y0,x^2+y^2<1,x\geq\frac{1}{4}y^2\}\\ \end{align} \]

定义2:(二元函数的极限)

\[\begin{align} &\lim_{(x,y)\rightarrow(x_0,y_0)}f(x,y)=A或\lim_{x\rightarrow x_0,y\rightarrow y_0}f(x,y)=A\\ \end{align} \]

例题

\[\begin{align} &求极限\\ &解法1;\\ &\lim_{x\rightarrow 0,y\rightarrow 0}xy\frac{x^2-y^2}{x^2+y^2}\\ &\xlongequal[x=r\cos\theta]{y=r\sin\theta}\lim_{r\rightarrow0}{r\cos\theta r\sin\theta\frac{r^2\cos2\theta}{r^2}}=0\\ &解法2:\\ &0\leq|xy\frac{x^2-y^2}{x^2+y^2}|\leq{|xy|}\\ &\lim_{x\rightarrow 0,y\rightarrow 0}{0}=0\leq\lim_{x\rightarrow 0,y\rightarrow 0}|xy\frac{x^2-y^2}{x^2+y^2}|\leq\lim_{x\rightarrow 0,y\rightarrow 0}|xy|=0\\ &\Leftrightarrow\lim_{x\rightarrow 0,y\rightarrow 0}xy\frac{x^2-y^2}{x^2+y^2}=0\\ &\\ &验证极限不存在\\ &(1)\lim_{x\rightarrow 0,y\rightarrow 0}\frac{xy}{x^2+y^2}\\ &(2)\lim_{x\rightarrow 0,y\rightarrow 0}\frac{x^3+y^3}{x^2+y}\\ &解:\\ &(1)令y=kx\\ &\lim_{x\rightarrow0,y=kx}\frac{xkx}{x^2+k^2x^2}=\frac{k}{1+k^2}\\ &(2)令y=-x^2+x^4\\ &\lim_{x\rightarrow0,y=-x^2+x^4}\frac{x^3+(x^4-x^2)^3}{x^2+(-x^2+x^4)}=\lim_{x\rightarrow0}{[\frac{1}{x}}+\frac{(x^4-x^2)^2}{x^4}]=\infty\\ \end{align} \]

注解:

\[\begin{align} &一元函数\{(x,f(x))|x\in D\}\\ &多元函数\{(x,y,f(x,y))|(x,y)\in D\} \end{align} \]

定义3(二院函数的连续性)

\[\begin{align} &f(x,y)在点P_0处连续:\lim_{x\rightarrow x_0,y\rightarrow y_0}f(x,y)=f(x_0,y_0)\\ &注解1:z=f(x,y)于P_0点连续\Leftrightarrow\Delta z=f(x,y)-f(x_0,y_0)\rightarrow0(x\rightarrow x_0,y\rightarrow y_0)\\ &注解2:"二元初等函数"在其定义域内处处连续,\lim_{x\rightarrow 1,y\rightarrow2}\frac{x+y}{x-y}=-3\\ \end{align} \]

定理1

\[\begin{align} &有界闭区域D\subset{R}上的连续函数,必有界,且有最大值最小值 \\ \end{align} \]

image-20210624223606852

定义4(偏导数)

\[\begin{align} &\frac{\partial{z}}{\partial x}|_{(x_0,y_0)}=\lim_{\Delta x\rightarrow 0}\frac{\Delta Z_x}{\Delta x}=\lim_{\Delta x\rightarrow0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}\\ &f_y'(x_0,y_0)=\lim_{\Delta y\rightarrow0}\frac{\Delta Z_y}{\Delta y}=\lim_{y\rightarrow y_0}\frac{f(x_0,y_)-f(x_0,y_0)}{y-y_0} \end{align} \]

image-20210624223625497

例题

\[\begin{align} &(1)设f(x,y)=\begin{cases}&\frac{xy}{x^2+y^2},(x,y)\neq(0,0)\\&0,(x,y)=(0,0)\\\end{cases},求f_x'(0,0)和f'_y(0,0),但\lim_{x\rightarrow 0,y\rightarrow 0}f(x,y)不存在\\ &(2)求f(x,y)=\sqrt{x^2+y^2}在(0,0)处的偏导数,并说明函数在此点的连续性\\ \end{align} \]

image-20210625110703853

\[\begin{align} &(1)f_x'(0,0)=\lim_{x\rightarrow0}\frac{f(x,0)-f(0,0)}{x-0}=\lim_{x\rightarrow 0}{\frac{0-0}{x}}=0\\ &同理得f_y'(0,0)=0 &\\ \end{align} \]

\[\begin{align} &\lim_{x\rightarrow 0^{\pm}}\frac{f(x,0)-f(0,0)}{x-0}=\lim_{x\rightarrow x^{\pm}}\frac{\sqrt{x^2}-0}{x}=\pm 1\\ &\Rightarrow f'_x(0,0),f'_y(0,0)不存在\\ \end{align} \]

定义5(全微分)

\[\begin{align} &若z=f(x,y),\Delta z=A\Delta x+B\Delta y+o(\rho)(\rho\rightarrow 0),\rho=\sqrt{\Delta x^2+\Delta y^2},则称z=f(x,y)在点P_0可微,\\ &dz|_{(x_0,y_0)}=df|_{(x_0,y_0)}=A\Delta x+B\Delta y \end{align} \]

注解:

\[\begin{align} &(1)若\exist A,B使得\lim_{\Delta x\rightarrow0,\Delta y\rightarrow 0}\frac{\Delta f-A\Delta x-B\Delta y}{\sqrt{\Delta x^2+\Delta y^2}}=0,则f于(0,0)可微\\ &(2)若f于(x_0,y_0)可微,则\lim\frac{\Delta f-df}{\sqrt{\Delta x^2+\Delta y^2}}=0 \end{align} \]

定理2

\[\begin{align} &若z=f(x,y)在点P_0(x_0,y_0)处可微,则偏导数存在,且dz|_{(x_0,y_0)}=f'_x(x_0,y_0)dx+f_y'(x_0,y_0)dy\\ \end{align} \]

定理3 几个命题之间的关系

\[\begin{align} &可微\Rightarrow\begin{cases}&连续\Rightarrow极限存在\\&偏导数存在\\&方向导数存在\\\end{cases}\\ \end{align} \]

二元函数可微与偏导的联系 - blueflylabor - 博客园 (cnblogs.com)

例题

image-20210625155720429

注解:

\[\begin{align} &可微充分条件\Leftrightarrow偏导函数在(x_0,y_0)处连续\Rightarrow 可微\\ \end{align} \]

image-20210625155145956

image-20210625155207836

第二节 多元函数微分法

初等函数的微分法

image-20210627213536850

注解:

\[\begin{align} &(1)对x把y看做常数,对y把x看成常数\\ &(2)u\begin{cases}&u_x'\begin{cases}&u''_{xx}\\&u''_{xy}\\\end{cases}\\&u_y'\begin{cases}&u''_{yx}\\&u''_{yy}\\\end{cases}\\\end{cases} 当偏导函数连续时,u''_{xy}=u''_{yx} \end{align} \]

例题

\[\begin{align} &1.设z=\arcsin\frac{x}{\sqrt{x^2+y^2}},求\frac{\partial^2z}{\partial x^2},\frac{\partial^2z}{\partial x\partial y}\\ &解\\ &z'_x=\frac{|y|}{x^2+y^2}\\ &z''_{xx}=\frac{\partial}{\partial x}(\frac{|y|}{x^2+y^2})=\begin{cases}&\frac{-2xy}{(x^2+y^2)^2},y0\\&0,x\neq0,y=0\\&\frac{2xy}{(x^2+y^2)^2},y0\end{cases}\\ &z''_{xy}=\frac{\partial}{\partial y}(\frac{|y|}{x^2+y^2})=\begin{cases}&\frac{x^2-y^2}{(x^2+y^2)^2},y0\\&不存在,x\neq 0,y=0\\&\frac{y^2-x^2}{(x^2+y^2)^2},y<0\\\end{cases}\\ \end{align} \]

image-20210629140548382

复合函数微分法

image-20210627214607550

image-20210627214917783

\[\begin{align} &\frac{\partial z}{\partial x}=-\frac{1}{x^2}f(xy)+\frac{1}{x}f'(xy)y+y\phi'(x+y)\\ &\frac{\partial^2 z}{\partial x\partial y}=-\frac{1}{x^2}f'(xy)x+\frac{1}{x}[f''(xy)xy+f'(xy)]+\phi'(x+y)+y\phi''(x+y)\\ \end{align} \]

image-20210627215756345

\[\begin{align} &法1:\\ &\frac{\partial f}{\partial x}=e^{-(xy)^2}y-e^{-(x+y)^2}\\ &\frac{\partial^2 f}{\partial x\partial y}=\\ &法2:\\ &令u=x+y,v=xy,f(x,y)由\int_v^ue^{-t^2}dt与\begin{cases}&u=x+y\\&v=xy\\\end{cases}复合\\ &\frac{\partial f}{\partial x}=e^{-(v)^2}\frac{\partial u}{\partial x}-e^{-(u)^2}\frac{\partial v}{\partial x}\\ &\frac{\partial^2 f}{\partial x\partial y}=\\ \end{align} \]

多元隐函数的微分法

image-20210628214256991

例题:

image-20210628214429361

\[\begin{align} &法1:公式法\\ &F(x,y,u)=u+e^u-xy,u'_x=\frac{\partial u}{\partial x}=-\frac{F'_x}{F'_x}=-\frac{-y}{1+e^u}\\ &法2:\\ &u'_x+e^uu'_x=y,u_x'=\frac{y}{1+e^u},u'_y={\frac{x}{1+e^u}}\\\ &\frac{\partial ^2u}{\partial x\partial y}={\frac{1*[1+e^u]-y*e^u*u_y'}{[1+e^u]^2}}\\ \end{align} \]

image-20210628215810134

多元函数的极值与最值求法

image-20210701154053195

image-20210701154208433

image-20210701154128709

无条件极值(二元)

\[\begin{align} &(1)定义\\ &(2)必要条件\begin{cases}&z_x'(x_0,y_0)=0\\&z_y'(x_0,y_0)=0\\\end{cases}\\ &(3)充分条件\Delta=AC-B^2\begin{cases}&0\\&<0\\\end{cases}\\ &A=f_{xx}''(x_0,y_0),B=f_{xy}''(x_0,y_0),C=f''_{yy}(x_0,y_0)\\ \end{align} \]

有界闭区域

\[\begin{align} &有界闭区域D上的连续函数f(x,y)的最值:\\ &如果函数f(x,y)在有界闭区域D\subset R^2上连续,则f(x,y)必在D上取得最大值和最小值\\ \end{align} \]

image-20210628224325667

解题步骤

image-20210629135428912

image-20210629135455737

例题:

image-20210628215938737

image-20210628220016932

posted on 2024-06-04 16:19  blueflylabor  阅读(12)  评论(0编辑  收藏  举报