Kulla-Conty BRDF

question:

brdf中的几何因子考虑了微表面的自遮挡,当表面粗糙度较大或者与法线夹角越大时,这个因子越小,导致颜色越暗。这部分能量相等于直接忽略掉了,实际上被遮挡的光线会被反射,然后经过若干次反射,从另一点以另一角度重新进入视线。因此需要将缺失的能量重新补回来。

Kulla-Conty近似

Kulla-Conty近似额外添加了一个补充的brdf系数,使得总能量守恒。

引入颜色

注意Kulla-Conty实现的是:1次弹射+能量补充,而一次弹射的内容里面是已经有考虑颜色的菲涅尔项了,但是能量的补充我们始终认为是对于一个没有颜色的,F值为1的东西进行的补充【上边推导过程假设了F为1】,这对于有颜色的东西会补充过多,因为F小于1时,多次弹射时每次都会被吸收一部分。因此我们这里考虑颜色是对于补充的那一部分考虑颜色,对补充的能量进行衰减!

现在我们要把这个菲涅尔项考虑进来了,但是这里注意,这个菲涅尔的值,是和角度有关系的,如果在这里再考虑上角度,其实最后我们是很难得到一个实时的结果的。

所以这里再次采用了一种近似的方案,就是把菲涅尔选择一个各角度下的平均值,不管角度是多少都用这一个菲涅尔值。

这个平均和我们之前的E_avg
是一样的思路:

\[F_{avg} = \frac{\int_0^1{F(u)udu}}{\int_0^1{udu}}=2\int_0^1{F(u)udu} \]

代码

离线计算E(u)

Vec3f IntegrateBRDF(Vec3f V, float roughness) {
	float A = 0.0;
	float B = 0.0;
	float C = 0.0;
    const int sample_count = 2048;
    Vec3f N = Vec3f(0.0, 0.0, 1.0);
    for (int i = 0; i < sample_count; i++) {
        Vec2f Xi = Hammersley(i, sample_count);
        Vec3f H = ImportanceSampleGGX(Xi, N, roughness);
        Vec3f L = normalize(H * 2.0f * dot(V, H) - V);

        float NoL = std::max(L.z, 0.0f);
        float NoH = std::max(H.z, 0.0f);
        float VoH = std::max(dot(V, H), 0.0f);
        float NoV = std::max(dot(N, V), 0.0f);
        
        // TODO: To calculate (fr * ni) / p_o here - Bonus 1
		float g = GeometrySmith(roughness, NoV, NoL);
		float w = VoH * g / (NoV*NoH);
		A += w;
		B += w;
		C += w;
        // Split Sum - Bonus 2
    }
	//return { 1.0f - A / sample_count,1.0f - B / sample_count, 1.0f - C / sample_count };
	return { A / static_cast<float>(sample_count), B / static_cast<float>(sample_count), C / static_cast<float>(sample_count) };
    //return Vec3f(1.0f);
}

结果:

离线计算E_avg:

Vec3f IntegrateEmu(Vec3f V, float roughness, float NdotV, Vec3f Ei) {
    Vec3f Eavg = Vec3f(0.0f);
    const int sample_count = 1024;
    Vec3f N = Vec3f(0.0, 0.0, 1.0);
	/*
    for (int i = 0; i < sample_count; i++) 
    {
        Vec2f Xi = Hammersley(i, sample_count);
        Vec3f H = ImportanceSampleGGX(Xi, N, roughness);
        Vec3f L = normalize(H * 2.0f * dot(V, H) - V);

        float NoL = std::max(L.z, 0.0f);
        float NoH = std::max(H.z, 0.0f);
        float VoH = std::max(dot(V, H), 0.0f);
        float NoV = std::max(dot(N, V), 0.0f);

        // TODO: To calculate Eavg here - Bonus 1
        
    }
	*/
	return Ei * NdotV * 2;
	//NdotV = 1.0f - NdotV;
	//return Ei * sqrt(1 - NdotV * NdotV) * 2;
    //return Vec3f(1.0);
}

int main() {
    unsigned char *Edata = stbi_load("./GGX_E_LUT.png", &resolution, &resolution, &channel, 3);
    if (Edata == NULL) 
    {
		std::cout << "ERROE_FILE_NOT_LOAD" << std::endl;
		return -1;
	}
	else 
    {
		std::cout << resolution << " " << resolution << " " << channel << std::endl;
        // | -----> mu(j)
        // | 
        // | rough(i)
        // Flip it, if you want the data written to the texture
        uint8_t data[128 * 128 * 3];
        float step = 1.0 / resolution;
        Vec3f Eavg = Vec3f(0.0);
		for (int i = 0; i < resolution; i++) 
        {
            float roughness = step * (static_cast<float>(i) + 0.5f);
			for (int j = 0; j < resolution; j++) 
            {
                float NdotV = step * (static_cast<float>(j) + 0.5f);
                Vec3f V = Vec3f(std::sqrt(1.f - NdotV * NdotV), 0.f, NdotV);
				//resolution - 1 - i
				//这里非常隐晦,与产生图像是顺序相反
				//产生图像时,theta从2/Pi到0
				//这里theta从0到2/Pi进行访问
				//这里的NdotV范围从0到1均匀采样,相当于sin(theta)
                Vec3f Ei = getEmu((resolution - 1 - i), j, 0, Edata, NdotV, roughness);
                Eavg += IntegrateEmu(V, roughness, NdotV, Ei) * step;
                setRGB(i, j, 0.0, data);
			}

            for(int k = 0; k < resolution; k++)
            {
                setRGB(i, k, Eavg, data);
            }

            Eavg = Vec3f(0.0);
		}
		stbi_flip_vertically_on_write(true);
		stbi_write_png("GGX_Eavg_LUT.png", resolution, resolution, channel, data, 0);
	}
	stbi_image_free(Edata);
    return 0;
}

结果:

运行时,KullaContyFragment.glsl:

#ifdef GL_ES
precision mediump float;
#endif

uniform vec3 uLightPos;
uniform vec3 uCameraPos;
uniform vec3 uLightRadiance;
uniform vec3 uLightDir;

uniform sampler2D uAlbedoMap;
uniform float uMetallic;
uniform float uRoughness;
uniform sampler2D uBRDFLut;
uniform sampler2D uEavgLut;
uniform samplerCube uCubeTexture;

varying highp vec2 vTextureCoord;
varying highp vec3 vFragPos;
varying highp vec3 vNormal;

const float PI = 3.14159265359;

float DistributionGGX(vec3 N, vec3 H, float roughness)
{
   // TODO: To calculate GGX NDF here
     float a = roughness*roughness;
    float a2 = a*a;
    float NdotH = max(dot(N, H), 0.0);
    float NdotH2 = NdotH*NdotH;

    float nom   = a2;
    float denom = (NdotH2 * (a2 - 1.0) + 1.0);
    denom = PI * denom * denom;

    return nom / max(denom, 0.0001);
}

float GeometrySchlickGGX(float NdotV, float roughness)
{
    // TODO: To calculate Schlick G1 here
    float a = roughness;
	  //float k = (a +1.0)*(a+1.0) / 8.0;
    float k = (a * a) / 2.0;//用这个才能得到assignment4.pdf中的效果图
	  float nom = NdotV;
	  float denom = NdotV * (1.0 - k) + k;

	  return nom / denom;
}

float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
    // TODO: To calculate Smith G here
    return GeometrySchlickGGX(max(dot(N,V),0.0),roughness)*GeometrySchlickGGX(max(dot(N,L),0.0),roughness);
}

vec3 fresnelSchlick(vec3 F0, vec3 V, vec3 H)
{
    // TODO: To calculate Schlick F here
    float HoV = max(dot(V,H), 0.0);
    vec3 f = F0 + (vec3(1.0) - F0) * pow((1.0 - HoV), 5.0);
    // TODO: To calculate Schlick F here
    return f;
}


//https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017_pbs_imageworks_slides_v2.pdf
vec3 AverageFresnel(vec3 r, vec3 g)
{
    return vec3(0.087237) + 0.0230685*g - 0.0864902*g*g + 0.0774594*g*g*g
           + 0.782654*r - 0.136432*r*r + 0.278708*r*r*r
           + 0.19744*g*r + 0.0360605*g*g*r - 0.2586*g*r*r;
}

vec3 MultiScatterBRDF(float NdotL, float NdotV)
{
  vec3 albedo = pow(texture2D(uAlbedoMap, vTextureCoord).rgb, vec3(2.2));

  vec3 E_o = texture2D(uBRDFLut, vec2(NdotL, uRoughness)).xyz;
  vec3 E_i = texture2D(uBRDFLut, vec2(NdotV, uRoughness)).xyz;

  vec3 E_avg = texture2D(uEavgLut, vec2(0, uRoughness)).xyz;
  // copper
  vec3 edgetint = vec3(0.827, 0.792, 0.678);
  vec3 F_avg = AverageFresnel(albedo, edgetint);
  
  // TODO: To calculate fms and missing energy here
  float fms = (1.0-E_o.x)*(1.0-E_i.x)/(PI*(1.0-E_avg.x));
  vec3 fadd = F_avg*E_avg/(vec3(1.0)-F_avg*(vec3(1.0)-E_avg));
  
  return vec3(fms)*fadd;
  
}

void main(void) {
  vec3 albedo = pow(texture2D(uAlbedoMap, vTextureCoord).rgb, vec3(2.2));

  vec3 N = normalize(vNormal);
  vec3 V = normalize(uCameraPos - vFragPos);
  float NdotV = max(dot(N, V), 0.0);

  vec3 F0 = vec3(0.04); 
  F0 = mix(F0, albedo, uMetallic);

  vec3 Lo = vec3(0.0);

  // calculate per-light radiance
  vec3 L = normalize(uLightDir);
  vec3 H = normalize(V + L);
  float distance = length(uLightPos - vFragPos);
  float attenuation = 1.0 / (distance * distance);
  vec3 radiance = uLightRadiance;

  float NDF = DistributionGGX(N, H, uRoughness);   
  float G   = GeometrySmith(N, V, L, uRoughness);
  vec3 F = fresnelSchlick(F0, V, H);
      
  vec3 numerator    = NDF * G * F; 
  float denominator = 4.0 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0);
  vec3 Fmicro = numerator / max(denominator, 0.001); 
  
  float NdotL = max(dot(N, L), 0.0);        

  vec3 Fms = MultiScatterBRDF(NdotL, NdotV);
  vec3 BRDF = Fmicro + Fms;
  
  Lo += BRDF * radiance * NdotL;
  vec3 color = Lo;
  
  color = color / (color + vec3(1.0));
  color = pow(color, vec3(1.0/2.2)); 
  gl_FragColor = vec4(color, 1.0);

}

结果:

上一排是使用了Kulla-Cony BRDF,下一排使用了没有添加补充的BRDF,可以看到在低粗糙度时,使用了Kulla-Cony BRDF的要更亮一些。

posted @ 2024-01-22 21:42  bluebean  阅读(46)  评论(0编辑  收藏  举报