PRT预计算辐射传输方法

PRT(Precomputed Radiance Transfer)技术是一种用于实时渲染全局光照的方法。它通过预计算光照传输来节省时间,并能够实时重现面积光源下3D模型的全局光照效果。

由于PRT方法的局限,它不能计算随机动态场景的全局光照,场景中物体也不可变动。

Basic Idea

  1. 光的传输与背景光照内容本身无关,因此两部分拆开计算。
  2. 环境光照使用球谐函数拟合,来近似表示

Diffuse Case

对于完全粗糙表面,brdf系数是一个常量,因此:

Precompute

1.球谐函数表达环境光照,离线计算和保存

公式

\[l_i = \int_{\Omega}{L(\omega)B_i(\omega)d\omega} \]

code:


float CalcPreArea(const float& x, const float& y)
	{
		return std::atan2(x * y, std::sqrt(x * x + y * y + 1.0));
	}

	float CalcArea(const float& u_, const float& v_, const int& width,
		const int& height)
	{
		// transform from [0..res - 1] to [- (1 - 1 / res) .. (1 - 1 / res)]
		// ( 0.5 is for texel center addressing)
		float u = (2.0 * (u_ + 0.5) / width) - 1.0;
		float v = (2.0 * (v_ + 0.5) / height) - 1.0;

		// shift from a demi texel, mean 1.0 / size  with u and v in [-1..1]
		float invResolutionW = 1.0 / width;
		float invResolutionH = 1.0 / height;

		// u and v are the -1..1 texture coordinate on the current face.
		// get projected area for this texel
		float x0 = u - invResolutionW;
		float y0 = v - invResolutionH;
		float x1 = u + invResolutionW;
		float y1 = v + invResolutionH;
		float angle = CalcPreArea(x0, y0) - CalcPreArea(x0, y1) -
			CalcPreArea(x1, y0) + CalcPreArea(x1, y1);

		return angle;
	}
	
template <size_t SHOrder>
	std::vector<Eigen::Array3f> PrecomputeCubemapSH(const std::vector<std::unique_ptr<float[]>>& images,
		const int& width, const int& height,
		const int& channel)
	{
		std::vector<Eigen::Vector3f> cubemapDirs;
		cubemapDirs.reserve(6 * width * height);
		for (int i = 0; i < 6; i++)
		{
			Eigen::Vector3f faceDirX = cubemapFaceDirections[i][0];
			Eigen::Vector3f faceDirY = cubemapFaceDirections[i][1];
			Eigen::Vector3f faceDirZ = cubemapFaceDirections[i][2];
			for (int y = 0; y < height; y++)
			{
				for (int x = 0; x < width; x++)
				{
					float u = 2 * ((x + 0.5) / width) - 1;
					float v = 2 * ((y + 0.5) / height) - 1;
					Eigen::Vector3f dir = (faceDirX * u + faceDirY * v + faceDirZ).normalized();
					cubemapDirs.push_back(dir);
				}
			}
		}
		constexpr int SHNum = (SHOrder + 1) * (SHOrder + 1);
		constexpr int Order = SHOrder;
		cout << "SHNum:" << SHNum << endl;
		cout << "Order:" << Order << endl;
		std::vector<Eigen::Array3f> SHCoeffiecents(SHNum);
		for (int i = 0; i < SHNum; i++)
			SHCoeffiecents[i] = Eigen::Array3f(0);
		float sumWeight = 0;
		//float u_ = 0, v_ = 0;
		int bindex = 0;
		for (int i = 0; i < 6; i++)
		{
			for (int y = 0; y < height; y++)
			{
				for (int x = 0; x < width; x++)
				{
					// TODO: here you need to compute light sh of each face of cubemap of each pixel
					// TODO: 此处你需要计算每个像素下cubemap某个面的球谐系数
					Eigen::Vector3f dir = cubemapDirs[i * width * height + y * width + x];
					int index = (y * width + x) * channel;
					Eigen::Array3f Le(images[i][index + 0], images[i][index + 1],
						images[i][index + 2]);
					//Le[0] = 0.5f; Le[1] = 0.5f; Le[2] = 0.5f;//for test
					// 从这里开始
					//u_ = x / (float)width;
					//v_ = y / (float)height;
					float area = CalcArea(x, y, width, height);
					// 对于每个基函数
					// L^2 + M+L+1 = index
					bindex = 0;
					for (int L = 0; L <= Order; L++) {
						//cout << "l:" << L << endl;
						for (int M = -L; M <= L; M++) {
							//cout << "m:" << M << endl;
							//cout << "bindex:" << bindex << endl;
							//if (bindex < SHNum) 
							{
								// 对于每个颜色
								Eigen::Vector3d dird = Eigen::Vector3d(dir.x(), dir.y(), dir.z());
								dird.normalize();
								float sh = sh::EvalSH(L, M, dird) * area;

								SHCoeffiecents[bindex][0] += Le[0] * sh;
								SHCoeffiecents[bindex][1] += Le[1] * sh;
								SHCoeffiecents[bindex][2] += Le[2] * sh;
							}
							bindex++;
						}
					}
				}
			}
		}
		return SHCoeffiecents;
	}

结果
light.txt

三列分别对应r,g,b的9个基函数系数数据。

2.离线计算光传播并保存

T有9个分量,对应于分别使用2阶球谐函数的9个基函数作为光照,在式子中的积分结果。

code:

std::unique_ptr<std::vector<double>> ProjectFunction(
    int order, const SphericalFunction& func, int sample_count) {
  CHECK(order >= 0, "Order must be at least zero.");
  CHECK(sample_count > 0, "Sample count must be at least one.");

  // This is the approach demonstrated in [1] and is useful for arbitrary
  // functions on the sphere that are represented analytically.
  const int sample_side = static_cast<int>(floor(sqrt(sample_count)));
  std::unique_ptr<std::vector<double>> coeffs(new std::vector<double>());
  coeffs->assign(GetCoefficientCount(order), 0.0);

  // generate sample_side^2 uniformly and stratified samples over the sphere
  std::random_device rd;
  std::mt19937 gen(rd());
  std::uniform_real_distribution<> rng(0.0, 1.0);
  for (int t = 0; t < sample_side; t++) {
    for (int p = 0; p < sample_side; p++) {
      double alpha = (t + rng(gen)) / sample_side;
      double beta = (p + rng(gen)) / sample_side;
      // See http://www.bogotobogo.com/Algorithms/uniform_distribution_sphere.php
      double phi = 2.0 * M_PI * beta;
      double theta = acos(2.0 * alpha - 1.0);

      // evaluate the analytic function for the current spherical coords
      double func_value = func(phi, theta);

      // evaluate the SH basis functions up to band O, scale them by the
      // function's value and accumulate them over all generated samples
      for (int l = 0; l <= order; l++) {
        for (int m = -l; m <= l; m++) {
          double sh = EvalSH(l, m, phi, theta);
          (*coeffs)[GetIndex(l, m)] += func_value * sh;
        }
      }
    }
  }

  // scale by the probability of a particular sample, which is
  // 4pi/sample_side^2. 4pi for the surface area of a unit sphere, and
  // 1/sample_side^2 for the number of samples drawn uniformly.
  double weight = 4.0 * M_PI / (sample_side * sample_side);
  for (unsigned int i = 0; i < coeffs->size(); i++) {
     (*coeffs)[i] *= weight;
  }

  return coeffs;
}
for (int i = 0; i < mesh->getVertexCount(); i++)
		{
			const Point3f& v = mesh->getVertexPositions().col(i);
			const Normal3f& n = mesh->getVertexNormals().col(i);
			double dot = 0.0f;
			double* dd = &dot;
			bool intersect = false;
			auto shFunc = [&](double phi, double theta) -> double {
				Eigen::Array3d d = sh::ToVector(phi, theta);
				const auto wi = Vector3f(d.x(), d.y(), d.z());
				if (m_Type == Type::Unshadowed)
				{
					cout << "Unshadowed" << endl;
					// TODO: here you need to calculate unshadowed transport term of a given direction
					// TODO: 此处你需要计算给定方向下的unshadowed传输项球谐函数值
					//*dd = 0.1f;//有奇怪的编译器优化
					//cout << "dd:" << *dd << endl;
					*dd = wi.x() * n.x() + wi.y() * n.y() + wi.z() * n.z();// wi.dot(n);
					//cout << "dd:" << *dd << endl;
					//cout << "wi:" << wi.x()<<" "<<wi.y()<<" " << wi.z() << endl;
					//cout << "n:" << n.x() << " " << n.y() << " " << n.z() << endl;
					if (*dd > 0) {
						//cout << "dd:" << *dd << endl;
						return *dd;
					}
					return 0;
				}
				else
				{
					// TODO: here you need to calculate shadowed transport term of a given direction
					// TODO: 此处你需要计算给定方向下的shadowed传输项球谐函数值
					cout << "Shadowed" << endl;
					intersect = (*scene).rayIntersect(Ray3f(v, wi));
					//cout << "intersect:"<< intersect << endl;
					if (!intersect) {
						*dd = wi.x() * n.x() + wi.y() * n.y() + wi.z() * n.z();// wi.dot(n);
						//cout << "dd:" << *dd << endl;
						//cout << "wi:" << wi.x()<<" "<<wi.y()<<" " << wi.z() << endl;
						//cout << "n:" << n.x() << " " << n.y() << " " << n.z() << endl;
						if (*dd > 0) {
							//cout << "dd:" << *dd << endl;
							return *dd;
						}
					}	
					return 0;
				}
				return 0;
			};
			auto shCoeff = sh::ProjectFunction(SHOrder, shFunc, m_SampleCount);
			for (int j = 0; j < shCoeff->size(); j++)
			{
				m_TransportSHCoeffs.col(i).coeffRef(j) = (*shCoeff)[j];
			}
		}

result: transport.txt

行数为模型顶点数,行数据为每个顶点处的对应每个基函数光照的积分结果。

Runtime Render

code:

在顶点着色器中计算:

attribute mat3 aPrecomputeLT;
attribute vec3 aVertexPosition;
attribute vec3 aNormalPosition;
attribute vec2 aTextureCoord;

uniform mat4 uModelMatrix;
uniform mat4 uViewMatrix;
uniform mat4 uProjectionMatrix;
uniform float uPrecomputeL[27];

varying highp vec2 vTextureCoord;
varying highp vec3 vFragPos;
varying highp vec3 vNormal;
varying highp vec3 vColor;

void main(void) {

  vFragPos = (uModelMatrix * vec4(aVertexPosition, 1.0)).xyz;
  vNormal = (uModelMatrix * vec4(aNormalPosition, 0.0)).xyz;

  gl_Position = uProjectionMatrix * uViewMatrix * uModelMatrix *
                vec4(aVertexPosition, 1.0);

  vTextureCoord = aTextureCoord;
  float r = 0.0;
  float g = 0.0;
  float b = 0.0;
  int index = 0;
  for(int i=0;i<3;i++){
    for(int j=0;j<3;j++){
        r += aPrecomputeLT[i][j]*uPrecomputeL[index];
        g += aPrecomputeLT[i][j]*uPrecomputeL[index+1];
        b += aPrecomputeLT[i][j]*uPrecomputeL[index+2];
        index +=3;
    }
    
  }
  //r=0.0;g=0.0;b=0.0;
  //r = uPrecomputeL[26];
  //r = aPrecomputeLT[0][0];
  vColor = vec3(r,g,b);
}

其中uPrecomputeL是长度为3*9的float数组,对应于light.txt的数据。

aPrecompute是3x3矩阵,存储了transport.txt对应顶点的9个数据。

result:

优点:运行时计算非常简单和快速
缺点

  1. 物体位置旋转不能发生变化,否则光传播发生改变
  2. 在shadow和inter-reflection case中考虑了物体的自遮挡和内部反射,但不会考虑物体之间的遮挡与反射,可以认为是一种局部(local)光照方法。
posted @ 2024-01-22 21:27  bluebean  阅读(174)  评论(0编辑  收藏  举报