dpdk学习笔记:ARP实现
dpdk学习笔记:ARP实现
1、ARP的作用:
① 响应其他机器的arp request
② 定时主动发送arp request,响应其他机器的arp reply,记录在arp table
2、代码
arp.h
#ifndef __NG_ARP_H__
#define __NG_ARP_H__
#include <rte_ether.h>
#define ARP_ENTRY_STATUS_DYNAMIC 0
#define ARP_ENTRY_STATUS_STATIC 1
#define LL_ADD(item, list) do { \
item->prev = NULL; \
item->next = list; \
if (list != NULL) list->prev = item; \
list = item; \
}while(0)
#define LL_REMOVE(item, list) do { \
if (item->prev != NULL) item->prev->next = item->next; \
if (item->next != NULL) item->next->prev = item->prev; \
if (list == item) list = item->next; \
item->prev = item->next = NULL; \
} while(0)
struct arp_entry {
uint32_t ip;
uint8_t hwaddr[RTE_ETHER_ADDR_LEN];
uint8_t type;
struct arp_entry *next;
struct arp_entry *prev;
};
struct arp_table {
struct arp_entry *entries;
int count;
};
static struct arp_table *arpt = NULL;
static struct arp_table *arp_table_instance(void) {
if (arpt == NULL) {
arpt = rte_malloc("arp_table", sizeof(struct arp_table), 0);
if (arpt == NULL) {
rte_exit(EXIT_FAILURE, "RTE_MALLOC arp table failed");
}
memset(arpt, 0, sizeof(struct arp_table));
}
return arpt;
}
static uint8_t *ng_get_dst_macaddr (uint32_t dip) {
struct arp_entry *iter;
struct arp_table *table = arp_table_instance();
for (iter = table->entries; iter != NULL; iter = iter->next) {
if (dip == iter->ip) {
return iter->hwaddr;
}
}
return NULL;
}
#endif
arp_table.c
#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_timer.h>
#include <stdio.h>
#include <arpa/inet.h>
#include "arp.h"
#define ENABLE_SEND 1
#define ENABLE_ARP 1
#define ENABLE_ICMP 1
#define ENABLE_ARP_REPLY 1
#define ENABLE_DEBUG 1
#define ENABLE_TIMER 1
#define NUMS_MBUF (4096 - 1)
#define BURST_SIZE 32
#define TIMER_RESOLUTION_CYCLES 20000000000ULL //10s
#define MAKE_IPV4_ADDR(a, b, c, d) (a + (b<<8) + (c<<16) + (d<<24))
static uint32_t gLocalIp = MAKE_IPV4_ADDR(192, 168, 146, 143);
#if ENABLE_SEND
static uint32_t gSrcIp;
static uint32_t gDstIp;
static uint8_t gSrcMac[RTE_ETHER_ADDR_LEN];
static uint8_t gDstMac[RTE_ETHER_ADDR_LEN];
static uint16_t gSrcPort;
static uint16_t gDstPort;
#endif
#if ENABLE_ARP_REPLY
static uint8_t gDefaultArpMac[RTE_ETHER_ADDR_LEN] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
#endif
int gDpdkPortId = 0;
static const struct rte_eth_conf port_conf_default = {
.rxmode = {.max_rx_pkt_len = RTE_ETHER_MAX_LEN }
};
static void ng_init_port(struct rte_mempool *mbuf_pool) {
//检测端口是否合法
uint16_t nb_sys_ports = rte_eth_dev_count_avail();
if (nb_sys_ports == 0) {
rte_exit(EXIT_FAILURE, "No Supported eth found!\n");
}
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(gDpdkPortId, &dev_info);
const int num_rx_queues = 1;
const int num_tx_queues = 1;
struct rte_eth_conf port_conf = port_conf_default;
rte_eth_dev_configure(gDpdkPortId, num_rx_queues, num_tx_queues, &port_conf);
if (rte_eth_rx_queue_setup(gDpdkPortId, 0, 1024,
rte_eth_dev_socket_id(gDpdkPortId), NULL, mbuf_pool) < 0) {
rte_exit(EXIT_FAILURE, "Could not setup RX queue\n");
}
#if ENABLE_SEND
struct rte_eth_txconf txq_conf = dev_info.default_txconf;
txq_conf.offloads = port_conf.rxmode.offloads;
if (rte_eth_tx_queue_setup(gDpdkPortId, 0, 1024,
rte_eth_dev_socket_id(gDpdkPortId), &txq_conf) < 0) {
rte_exit(EXIT_FAILURE, "Could not setup TX queue\n");
}
#endif
if (rte_eth_dev_start(gDpdkPortId) < 0) {
rte_exit(EXIT_FAILURE, "Could not start\n");
}
rte_eth_promiscuous_enable(gDpdkPortId);
}
static int ng_encode_udp_pkt(uint8_t *msg, unsigned char *data, uint16_t total_len) {
//1 ethhdr
struct rte_ether_hdr *eth = (struct rte_ether_hdr*)msg;
rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
rte_memcpy(eth->d_addr.addr_bytes, gDstMac, RTE_ETHER_ADDR_LEN);
eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
//2 iphdr
struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr*)(msg + sizeof(struct rte_ether_hdr));
ip->version_ihl = 0x45;
ip->type_of_service = 0;
ip->total_length = htons(total_len - sizeof(struct rte_ether_hdr));
ip->packet_id = 0;
ip->fragment_offset = 0;
ip->time_to_live = 64; //ttl=64
ip->next_proto_id = IPPROTO_UDP;
ip->src_addr = gSrcIp;
ip->dst_addr = gDstIp;
ip->hdr_checksum = 0;
ip->hdr_checksum = rte_ipv4_cksum(ip);
//3 udphdr
struct rte_udp_hdr *udp = (struct rte_udp_hdr*)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
udp->src_port = gSrcPort;
udp->dst_port = gDstPort;
uint16_t udplen = total_len - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);
udp->dgram_len = htons(udplen);
rte_memcpy((uint8_t*)(udp + 1), data, udplen);
udp->dgram_cksum = 0;
udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip, udp);
return 0;
}
static struct rte_mbuf* ng_send_udp(struct rte_mempool *mbuf_pool, uint8_t *data, uint16_t length) {
//mempool --> mbuf
const unsigned total_len = length + 42;
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
if (!mbuf) {
rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
}
mbuf->pkt_len = total_len;
mbuf->data_len = total_len;
uint8_t *pktdata = rte_pktmbuf_mtod(mbuf, uint8_t*);
ng_encode_udp_pkt(pktdata, data, total_len);
return mbuf;
}
#if ENABLE_ARP
static int ng_encode_arp_pkt(uint8_t *msg, uint16_t opcode, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {
//1 ethhdr
struct rte_ether_hdr *eth = (struct rte_ether_hdr*)msg;
rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
if (!strncmp((const char *)dst_mac, (const char *)gDefaultArpMac, RTE_ETHER_ADDR_LEN)) {
uint8_t mac[RTE_ETHER_ADDR_LEN] = {0X0};
rte_memcpy(eth->d_addr.addr_bytes, mac, RTE_ETHER_ADDR_LEN);
} else {
rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
}
eth->ether_type = htons(RTE_ETHER_TYPE_ARP);
//2 arp
struct rte_arp_hdr *arp = (struct rte_arp_hdr*)(eth + 1);
arp->arp_hardware = htons(1);
arp->arp_protocol = htons(RTE_ETHER_TYPE_IPV4);
arp->arp_hlen = RTE_ETHER_ADDR_LEN;
arp->arp_plen = sizeof(uint32_t);
arp->arp_opcode = htons(opcode);
rte_memcpy(arp->arp_data.arp_sha.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
rte_memcpy(arp->arp_data.arp_tha.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
arp->arp_data.arp_sip = sip;
arp->arp_data.arp_tip = dip;
return 0;
}
static struct rte_mbuf* ng_send_arp(struct rte_mempool *mbuf_pool, uint16_t opcode, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {
const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_arp_hdr);
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
if (!mbuf) {
rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
}
mbuf->pkt_len = total_length;
mbuf->data_len = total_length;
uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
ng_encode_arp_pkt(pkt_data, opcode, dst_mac, sip, dip);
return mbuf;
}
#endif
#if ENABLE_ICMP
static uint16_t ng_checksum(uint16_t *addr, int count) {
register long sum = 0;
while (count > 1) {
sum += *(unsigned short*)addr++;
count -= 2;
}
if (count > 0) {
sum += *(unsigned char *)addr;
}
while (sum >> 16) {
sum = (sum & 0xffff) + (sum >> 16);
}
return ~sum;
}
static int ng_encode_icmp_pkt(uint8_t *msg, uint8_t *dst_mac,
uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {
//1 ether
struct rte_ether_hdr *eth = (struct rte_ether_hdr*)msg;
rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
//2 ip
struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr*)(msg + sizeof(struct rte_ether_hdr));
ip->version_ihl = 0x45;
ip->type_of_service = 0;
ip->total_length = htons(sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr));
ip->packet_id = 0;
ip->fragment_offset = 0;
ip->time_to_live = 64; //ttl=64
ip->next_proto_id = IPPROTO_ICMP;
ip->src_addr = sip;
ip->dst_addr = dip;
ip->hdr_checksum = 0;
ip->hdr_checksum = rte_ipv4_cksum(ip);
//3 icmp
struct rte_icmp_hdr *icmp = (struct rte_icmp_hdr *)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
icmp->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
icmp->icmp_code = 0;
icmp->icmp_ident = id;
icmp->icmp_seq_nb = seqnb;
icmp->icmp_cksum = 0;
icmp->icmp_cksum = ng_checksum((uint16_t*)icmp, sizeof(struct rte_icmp_hdr));
return 0;
}
static struct rte_mbuf *ng_send_icmp(struct rte_mempool *mbuf_pool, uint8_t *dst_mac,
uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {
const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr);
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
if (!mbuf) {
rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc\n");
}
mbuf->pkt_len = total_length;
mbuf->data_len = total_length;
uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
ng_encode_icmp_pkt(pkt_data, dst_mac, sip, dip, id, seqnb);
return mbuf;
}
#endif
static inline void
print_ether_addr(const char *name, const struct rte_ether_addr *eth_addr) {
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
#if ENABLE_TIMER
static void
arp_request_timer_cb(__attribute__((unused)) struct rte_timer *tim,
__attribute__((unused)) void *arg) {
struct rte_mempool *mbuf_pool = (struct rte_mempool *)arg;
int i = 0;
for (i = 1; i <= 254; i++) {
uint32_t dstip = (gLocalIp & 0x00FFFFFF) | (0xFF000000 & (i << 24));
struct rte_mbuf *arpbuf = NULL;
uint8_t *dstmac = ng_get_dst_macaddr(dstip);
if (dstmac == NULL) {
arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, gDefaultArpMac, gLocalIp, dstip);
} else {
arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, dstmac, gLocalIp, dstip);
}
rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
rte_pktmbuf_free(arpbuf);
}
}
#endif
int main(int argc, char *argv[]) {
if (rte_eal_init(argc, argv) < 0) {
rte_exit(EXIT_FAILURE, "Error with EAL init\n");
}
struct rte_mempool *mbuf_pool = rte_pktmbuf_pool_create("mbuf pool", NUMS_MBUF,
0, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (mbuf_pool == NULL) {
rte_exit(EXIT_FAILURE, "Could not create mbuf pool");
}
ng_init_port(mbuf_pool);
rte_eth_macaddr_get(gDpdkPortId, (struct rte_ether_addr*)gSrcMac);
#if ENABLE_TIMER
rte_timer_subsystem_init();
struct rte_timer arp_timer;
rte_timer_init(&arp_timer);
uint64_t hz = rte_get_timer_hz();
unsigned lcore_id = rte_lcore_id();
rte_timer_reset(&arp_timer, hz, PERIODICAL, lcore_id, arp_request_timer_cb, mbuf_pool);
#endif
while(1) {
struct rte_mbuf *mbufs[BURST_SIZE];
unsigned num_recved = rte_eth_rx_burst(gDpdkPortId, 0, mbufs, BURST_SIZE);
if (num_recved > BURST_SIZE) {
rte_exit(EXIT_FAILURE, "Error receving from eth\n");
}
unsigned i = 0;
for (i = 0; i < num_recved; ++i) {
struct rte_ether_hdr *ehdr = rte_pktmbuf_mtod(mbufs[i], struct rte_ether_hdr *);
#if ENABLE_ARP
if (ehdr->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) {
struct rte_arp_hdr *ahdr = rte_pktmbuf_mtod_offset(mbufs[i],
struct rte_arp_hdr *, sizeof(struct rte_ether_hdr));
if (ahdr->arp_data.arp_tip == gLocalIp) {
if (ahdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REQUEST)) {
struct rte_mbuf *arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REPLY, ahdr->arp_data.arp_sha.addr_bytes,
ahdr->arp_data.arp_tip, ahdr->arp_data.arp_sip);
rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
rte_pktmbuf_free(arpbuf);
rte_pktmbuf_free(mbufs[i]);
} else if (ahdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REPLY)) {
uint8_t *hwaddr = ng_get_dst_macaddr(ahdr->arp_data.arp_sip);
struct arp_table *table = arp_table_instance();
if (hwaddr == NULL) {
struct arp_entry *entry = rte_malloc("arp entry", sizeof(struct arp_entry), 0);
if (entry) {
memset(entry, 0, sizeof(struct arp_entry));
entry->ip = ahdr->arp_data.arp_sip;
rte_memcpy(entry->hwaddr, ahdr->arp_data.arp_sha.addr_bytes, RTE_ETHER_ADDR_LEN);
entry->type = 0;
LL_ADD(entry, table->entries);
table->count++;
}
}
#if ENABLE_DEBUG
struct arp_entry *iter;
for (iter = table->entries; iter != NULL; iter = iter->next) {
print_ether_addr("arp entry --> mac: ", (const struct rte_ether_addr *)iter->hwaddr);
struct in_addr addr;
addr.s_addr = iter->ip;
printf("arp --> ip: %s\n", inet_ntoa(addr));
}
#endif
}
}
}
#endif
if (ehdr->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
continue;
}
struct rte_ipv4_hdr *iphdr = rte_pktmbuf_mtod_offset(mbufs[i], struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr));
if (iphdr->next_proto_id == IPPROTO_UDP) {
struct rte_udp_hdr *udphdr =
(struct rte_udp_hdr *)((unsigned char*)iphdr + sizeof(struct rte_ipv4_hdr));
#if ENABLE_SEND
rte_memcpy(gDstMac, ehdr->s_addr.addr_bytes, RTE_ETHER_ADDR_LEN);
rte_memcpy(&gSrcIp, &iphdr->dst_addr, sizeof(uint32_t));
rte_memcpy(&gDstIp, &iphdr->src_addr, sizeof(uint32_t));
rte_memcpy(&gSrcPort, &udphdr->dst_port, sizeof(uint16_t));
rte_memcpy(&gDstPort, &udphdr->src_port, sizeof(uint16_t));
#endif
uint16_t length = ntohs(udphdr->dgram_len);
*((char*)udphdr + length) = '\0';
struct in_addr addr;
addr.s_addr = iphdr->src_addr;
printf("src: %s:%d, ", inet_ntoa(addr), ntohs(udphdr->src_port));
addr.s_addr = iphdr->dst_addr;
printf("dst: %s:%d, length:%d --> %s\n", inet_ntoa(addr), ntohs(udphdr->dst_port),
length, (char*)(udphdr + 1));
#if ENABLE_SEND
struct rte_mbuf *txbuf = ng_send_udp(mbuf_pool, (uint8_t*)(udphdr + 1), length);
rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
rte_pktmbuf_free(txbuf);
#endif
rte_pktmbuf_free(mbufs[i]);
}
#if ENABLE_ICMP
if (iphdr->next_proto_id == IPPROTO_ICMP) {
struct rte_icmp_hdr *icmphdr = (struct rte_icmp_hdr *)(iphdr + 1);
if (icmphdr->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) {
struct rte_mbuf *txbuf = ng_send_icmp(mbuf_pool, ehdr->s_addr.addr_bytes,
iphdr->dst_addr, iphdr->src_addr, icmphdr->icmp_ident, icmphdr->icmp_seq_nb);
rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
rte_pktmbuf_free(txbuf);
rte_pktmbuf_free(mbufs[i]);
}
}
#endif
}
#if ENABLE_TIMER
static uint64_t prev_tsc = 0, cur_tsc;
uint64_t diff_tsc;
diff_tsc = cur_tsc - prev_tsc;
if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
rte_timer_manage();
prev_tsc = cur_tsc;
}
#endif
}
}
3、运行结果
程序运行之前:
arp -a显示结果:
程序运行之后:
arp -a显示结果:
ping 192.168.146.143: