No.18 Kappa系数精度评价2.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | # Loading necessary libraries library (openxlsx) library (vcd) # Reading the Excel data AccData <- read.xlsx ( "D:/R_proj/a绘图demo/bKappa/五指山生态系统分类精度评价一二级类.xlsx" , sheet = 1, colNames = T) # Handle missing values (replace NA with 0) AccData[ is.na (AccData)] <- 0 AccMatrix <- data.matrix (AccData[1: nrow (AccData), 2: ncol (AccData)]) # Extract diagonal and total sum,提取对角线和总和 MatDiag <- diag (AccMatrix) TotalNum <- sum (AccMatrix) # Overall accuracy,总体精度 (OA) OA <- sum (MatDiag) / TotalNum # Kappa coefficient,计算Kappa系数,用vcd包中的函数 K <- Kappa (AccMatrix) # Calculate Kappa manually,手动计算Kappa系数 colFreqs <- colSums (AccMatrix) / TotalNum colFreqs rowFreqs <- rowSums (AccMatrix) / TotalNum rowFreqs p0 <- sum (MatDiag) / TotalNum pe <- crossprod (colFreqs, rowFreqs)[1] k2 <- (p0 - pe) / (1 - pe) # Calculate mapping accuracy and user accuracy mapping_accuracy <- data.frame (Class = character (), MappingAccuracy = numeric ()) user_accuracy <- data.frame (Class = character (), UserAccuracy = numeric ()) for (i in 1: nrow (AccMatrix)) { PA <- AccMatrix[i, i] / sum (AccMatrix[, i]) UA <- AccMatrix[i, i] / sum (AccMatrix[i, ]) # Append results to data frames mapping_accuracy <- rbind (mapping_accuracy, data.frame (Class = AccData[i, 1], MappingAccuracy = PA)) user_accuracy <- rbind (user_accuracy, data.frame (Class = AccData[i, 1], UserAccuracy = UA)) print ( paste (AccData[i, 1], "制图精度为" , PA * 100, "%" )) print ( paste (AccData[i, 1], "用户精度为" , UA * 100, "%" )) } # Output overall classification accuracy and Kappa coefficient print ( paste ( "总体分类精度为" , OA * 100, "%" )) print ( paste ( "Kappa系数为" , K[[ "Unweighted" ]][[ "value" ]] * 100, "%" )) # Save results to Excel output_file <- "D:/R_proj/a绘图demo/bKappa/classification_accuracy_results1.xlsx" write.xlsx ( list ( "Mapping Accuracy" = mapping_accuracy, "User Accuracy" = user_accuracy, "Overall Accuracy" = data.frame (OverallAccuracy = OA * 100), "Kappa Coefficient" = data.frame (Kappa = K[[ "Unweighted" ]][[ "value" ]] * 100) ), file = output_file) print ( paste ( "Results saved to" , output_file)) |
混淆矩阵:
结果:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· DeepSeek 开源周回顾「GitHub 热点速览」
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了