No.13 数据可视化02

主要内容:

  • 条形图
  • 饼图
  • 直方图
  • 核密度图等

1. 条形图 barplot()

1.1 调用数据mtcars

1
2
mtcars$gear结果:> mtcars$gear
 [1] 4 4 4 3 3 3 3 4 4 4 4 3 3 3 3 3 3 4 4 4 3 3 3 3 3 4 5 5 5 5 5 4

1.2 频数统计 table( )函数

1
2
3
4
5
6
#统计频数
table(mtcars$gear)结果:> #统计频数
> table(mtcars$gear)
 
 3  4  5
15 12  5
1
2
3
barplot(table(mtcars$gear), names.arg = c('gear-3','gear-4','gear-5'),
        ylim = c(0,20),  
        col=c("blue","green","red"))  

1
2
3
4
barplot(table(mtcars$gear), names.arg = c('gear-3','gear-4','gear-5'),
      <strong>  horiz = T, </strong>  #控制横向还是纵向
        xlim = c(0,20),
        col=c("blue","green","red"))

 

1.3 叠加柱状图 (矩阵输入)

1
2
3
4
5
6
7
8
table(mtcars$gear,mtcars$vs)
 
barplot(table(mtcars$gear,mtcars$vs))结果:> table(mtcars$gear,mtcars$vs)
    
     0  1
  3 12  3
  4  2 10
  5  4  1

 

1
2
3
4
5
6
7
8
9
10
table(mtcars$gear,mtcars$vs)
 
barplot(table(mtcars$gear,mtcars$vs), col=c("blue","green","red"))
legend("topright", title = "gear",
       legend = c(3,4,5), col = c("blue","green","red"), pch = 15, cex = 0.6 )  #pch = 15表示方框, cex = 0.6 缩放因子结果:> table(mtcars$gear,mtcars$vs)
    
     0  1
  3 12  3
  4  2 10
  5  4  1

 

1
2
3
barplot(table(mtcars$gear,mtcars$vs), beside=T, col=c("blue","green","red"))    #beside = T表示不堆叠,默认堆叠
legend("topright", title = "gear",
       legend = c(3,4,5), col = c("blue","green","red"), pch = 15, cex = 0.6 )

 

 2. 饼图 pie( )

1
2
3
#R自带调色板
a <- rainbow(5)
pie(c(1,1,1,1,1),col=a)

 

 3. 直方图 hist( ) 

1
hist(mtcars$disp)

 

4. 其他

lines() #在plot() 绘制的图像上再绘制图像(曲线)

 

 

 

 

posted @   百里屠苏top  阅读(6)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· DeepSeek 开源周回顾「GitHub 热点速览」
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
点击右上角即可分享
微信分享提示