百里屠苏top  

说明:

1.本文为个人学习笔记记录;

2.学习视频来源:https://space.bilibili.com/474347248/channel/detail?cid=143235

3.数据来源:唐国梁Tommy,为了方便志同道合的伙伴一起学习,我将数据上传到个人盘分享:

链接:https://pan.baidu.com/s/1beeeBv7eCLL7QjpoXin_AQ
提取码:0rrc

4.本文代码运行环境基于pycharm.(原代码是基于jupyter实现的)

5.欢迎一起讨论学习:QQ:386825951

 

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt  #可视化
import seaborn as sns   #可视化
import sklearn    #机器学习
from collections import Counter
pd.set_option('display.width', 1000)#加了这一行那表格的一行就不会分段出现了
pd.set_option('display.max_columns', None)

print("###############################step1: 加载数据集###########################################")
#step1: 加载数据集
train = pd.read_csv("train.csv",nrows=1000000)
test = pd.read_csv("test.csv")

print("##############################step2: 数据分析、清洗###########################################")
#step2: 数据分析、清洗
print(train.shape)
print(test.shape) # 查看形状

print(train.head())  #查看训练集的前五行

print(test.head(10))  #查看测试集的前10行

print(train.describe()) #训练集描述
print("*" * 100)
print(test.describe()) #测试集描述

print("****************************************1. 检查数据中是否有空值************************************************")
#检查数据中是否有空值
print("*" * 100 )
print("统计空值的数量,按升序排序")
print(train.isnull().sum().sort_values(ascending=True)) #统计空值的数量,按升序排序
print(test.isnull().sum().sort_values(ascending=True))  #统计空值的数量,按升序排序

#删除train中为空的数据
train.drop(train[train.isnull().any(1)].index, axis=0, inplace=True)  #any(1):这一行中的任意一个为空值;axis=0:行方向删除; inplace=True:原表中操作
print(train.shape)

print("****************************************2. 检查车费这一列数据************************************************")
#检查车费这一列数据(车费不可能为负数)
train['fare_amount'].describe()

#统计train中车费小于0的数据
Counter(train['fare_amount']<0)

#删除掉train中车费小于0的列
train.drop(train[train['fare_amount']<0].index, axis=0, inplace=True)

#再次检查车费这一列数据(发现没有负数了)
train['fare_amount'].describe()

#可视化(直方图)0 < 票价 <100     .hist()
train[train.fare_amount < 100].fare_amount.hist(bins=100, figsize=(14, 3))  #bins=100:分成100份
plt.xlabel("fare_$USD")
plt.title("Histogram")

print("****************************************3. 检查乘客passenger_count 这一列************************************************")
#检查乘客passenger_count 这一列
train['passenger_count'].describe()

#查看乘客人数大雨6的数据
train[train['passenger_count']>6]

#删除这个离异值
train.drop(train[train['passenger_count']>6].index, axis=0, inplace=True)

print("****************************************4. 检查上车点的经度和纬度************************************************")
#检查上车点的经度和纬度 纬度latitude范围:-90至90   经度范围:-180至180
train['pickup_latitude'].describe()
print(train[train['pickup_latitude']<-90])
print(train[train['pickup_latitude']>90])

#删除错误值
train.drop(train[(train['pickup_latitude']<-90) | (train['pickup_latitude']>90)].index, axis=0, inplace=True)

train['pickup_longitude'].describe()
print(train[train['pickup_longitude']<-180])
print(train[train['pickup_longitude']>180])

#删除错误值
train.drop(train[(train['pickup_longitude']<-180) | (train['pickup_longitude']>180)].index, axis=0, inplace=True)

print("****************************************5. 检查下车点的经度和纬度************************************************")
#同理,处理下车点经纬度的异常值
train.drop(train[(train['dropoff_latitude']<-90) | (train['dropoff_latitude']>90)].index, axis=0, inplace=True)
train.drop(train[(train['dropoff_longitude']<-180) | (train['dropoff_longitude']>180)].index, axis=0, inplace=True)

print("****************************************6. 可视化地图,清理一些离异值************************************************")
#可视化地图,清理一些离异值
# 1 在test数据集上确定一个区域框,删除掉train数据集中不在区域框内的奇异点

# (1) 纬度最小值,纬度最大值
print("纬度最小值,纬度最大值")
print(
min(test.pickup_latitude.min(), test.dropoff_latitude.min()),
max(test.pickup_latitude.max(), test.dropoff_latitude.max())
)

#(2)经度最小值,经度最大值
print("经度最小值,经度最大值")
print(
min(test.pickup_longitude.min(), test.dropoff_longitude.min()),
max(test.pickup_longitude.max(), test.dropoff_longitude.max()))

# (3) 根据指定的区域框,除掉那些奇异点

def select_within_boundingbox(df, BB):
    return (df.pickup_longitude >= BB[0]) & (df.pickup_longitude <= BB[1]) & \
           (df.pickup_latitude >= BB[2]) & (df.pickup_latitude <= BB[3]) & \
           (df.dropoff_longitude >= BB[0]) & (df.dropoff_longitude <= BB[1]) & \
           (df.dropoff_latitude >= BB[2]) & (df.dropoff_latitude <= BB[3])

BB = (-74.5, -72.8, 40.5, 41.8)
# 截图
#这里用网址截图可能会报错,于是我在网页直接打开链接将图片下载下来然后读取图片
#nyc_map = plt.imread('https://aiblog.nl/download/nyc_-74.5_-72.8_40.5_41.8.png')
nyc_map = plt.imread('nyc_map.png')

BB_zoom = (-74.3, -73.7, 40.5, 40.9) # 放大后的地图
# 截图(放大)

#nyc_map_zoom = plt.imread('https://aiblog.nl/download/nyc_-74.3_-73.7_40.5_40.9.png')
nyc_map_zoom = plt.imread('nyc_map_zoom.png')

train = train[select_within_boundingbox(train, BB)] # 删除区域框之外的点
print(train.shape)

# (4)在地图显示这些点
def plot_on_map(df, BB, nyc_map, s=10, alpha=0.2):
    fig, axs = plt.subplots(1, 2, figsize=(16, 10))
    # 第一个子图
    axs[0].scatter(df.pickup_longitude, df.pickup_latitude, alpha=alpha, c='r', s=s)
    axs[0].set_xlim(BB[0], BB[1])
    axs[0].set_ylim(BB[2], BB[3])
    axs[0].set_title('PickUp Locations')
    axs[0].imshow(nyc_map, extent=BB)

    # 第二个子图
    axs[1].scatter(df.dropoff_longitude, df.dropoff_latitude, alpha=alpha, c='r', s=s)
    axs[1].set_xlim((BB[0], BB[1]))
    axs[1].set_ylim((BB[2], BB[3]))
    axs[1].set_title('Dropoff locations')
    axs[1].imshow(nyc_map, extent=BB)

plot_on_map(train, BB, nyc_map, s=1, alpha=0.3)
plot_on_map(train, BB_zoom, nyc_map_zoom, s=1, alpha=0.3)
#在pycharm中显示画的图
#plt.show()

print("****************************************7. 检查数据类型************************************************")
print(train.dtypes)  #object : 字符串

# 日期类型转换:key, pickup_datetime   pd.to_datetime方法
for dataset in [train, test]:
    dataset['key'] = pd.to_datetime(dataset['key'])
    dataset['pickup_datetime'] = pd.to_datetime(dataset['pickup_datetime'])

print("****************************************8. 日期数据进行分析************************************************")
# 将日期分隔为:
#
# year
# month
# day
# hour
# day of week

# 增加5列,分别是:year, month, day, hour, day of week

for dataset in [train, test]:
    dataset['year'] = dataset['pickup_datetime'].dt.year
    dataset['month'] = dataset['pickup_datetime'].dt.month
    dataset['day'] = dataset['pickup_datetime'].dt.day
    dataset['hour'] = dataset['pickup_datetime'].dt.hour
    dataset['day of week'] = dataset['pickup_datetime'].dt.dayofweek

print(train.head())
print("*" * 100)
print(test.head())

print("****************************************9. 根据经纬度计算距离************************************************")


# 计算公式

def distance(lat1, long1, lat2, long2):
    data = [train, test]
    for i in data:
        R = 6371  # 地球半径(单位:千米)
        phi1 = np.radians(i[lat1])
        phi2 = np.radians(i[lat2])

        delta_phi = np.radians(i[lat2] - i[lat1])
        delta_lambda = np.radians(i[long2] - i[long1])

        # a = sin²((φB - φA)/2) + cos φA . cos φB . sin²((λB - λA)/2)
        a = np.sin(delta_phi / 2.0) ** 2 + np.cos(phi1) * np.cos(phi2) * np.sin(delta_lambda / 2.0) ** 2

        # c = 2 * atan2( √a, √(1−a) )
        c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))

        # d = R*c
        d = (R * c)  # 单位:千米
        i['H_Distance'] = d
    return d

distance('pickup_latitude','pickup_longitude','dropoff_latitude','dropoff_longitude')

print(train.head())
print("*" * 100)
print(test.head())

# 统计距离为0,票价为0的数据
train[(train['H_Distance']==0) & (train['fare_amount']==0)]
# 删除
train.drop(train[(train['H_Distance']==0) & (train['fare_amount']==0)].index, axis=0, inplace=True)


# 统计距离为0,票价不为0的数据
# 原因1:司机等待乘客很长时间,乘客最终取消了订单,乘客依然支付了等待的费用;
# 原因2:车辆的经纬度没有被准确录入或缺失;
len(train[(train['H_Distance']==0) & (train['fare_amount']!=0)])
# 删除
train.drop(train[(train['H_Distance']==0) & (train['fare_amount']!=0)].index, axis=0, inplace=True)

print("****************************************10. 新的字段:每公里车费:根据距离、车费,计算每公里的车费************************************************")
train['fare_per_mile'] = train.fare_amount / train.H_Distance

print(train.fare_per_mile.describe())
print(train.head())

# 统计每一年的不同时间段的每小时车费
train.pivot_table('fare_per_mile', index='hour', columns='year').plot(figsize=(14, 6))
plt.ylabel('Fare $USD/mile')
plt.show()

print("##############################step3: 模型训练和数据预测###########################################")
print(train.columns)
# Index(['key', 'fare_amount', 'pickup_datetime', 'pickup_longitude',
#        'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude',
#        'passenger_count', 'year', 'month', 'day', 'hour', 'day of week',
#        'H_Distance', 'fare_per_mile'],
#       dtype='object')
print(test.columns)
# Index(['key', 'pickup_datetime', 'pickup_longitude', 'pickup_latitude',
#        'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'year',
#        'month', 'day', 'hour', 'day of week', 'H_Distance'],
#       dtype='object')

X_train = train.iloc[:, [3,4,5,6,7,8,9,10,11,12,13]]
y_train = train.iloc[:, [1]] # are_amount 车费
print(X_train.shape)
print(y_train.shape)

# 随机森林实现

from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor()

rf.fit(X_train, y_train)

print(test.columns)
# Index(['key', 'pickup_datetime', 'pickup_longitude', 'pickup_latitude',
#        'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'year',
#        'month', 'day', 'hour', 'day of week', 'H_Distance'],
#       dtype='object')

rf_predict = rf.predict(test.iloc[:, [2,3,4,5,6,7,8,9,10,11,12]])

# submission = pd.read_csv("sample_submission.csv")
#
# submission.head()
# 提交

submission = pd.read_csv("sample_submission.csv")

submission['fare_amount'] = rf_predict

submission.to_csv("submission_1.csv", index=False)  ##inplace=True:在原表中补齐,为False则会生成一个新表返回

print(submission.head())

 过程图:

图1:

 

 

图2:

 

 图3:

 

 图4:

 

问题:

1. nyc_map_zoom = plt.imread('https://aiblog.nl/download/nyc_-74.3_-73.7_40.5_40.9.png') 是否可以下载任意地区的地图图片?

 

posted on 2021-05-07 15:50  百里屠苏top  阅读(184)  评论(0编辑  收藏  举报