Activate function
激励函数运行时激活神经网络中某一部分神经元,将激活信息向后传入下一层的神经系统
含有如下激励函数:
tf.nn.sigmoid:将实数压缩到0到1之间,一般只在二分类的最后输出层使用。主要缺陷为存在梯度消失问题,计算复杂度高,输出不以0为中心。
tf.nn.softmax:sigmoid的多分类扩展,一般只在多分类问题的最后输出层使用。
tf.nn.tanh:将实数压缩到-1到1之间,输出期望为0。主要缺陷为存在梯度消失问题,计算复杂度高。
tf.nn.relu:修正线性单元,最流行的激活函数。一般隐藏层使用。主要缺陷是:输出不以0为中心,输入小于0时存在梯度消失问题(死亡relu)。
tf.nn.leaky_relu:对修正线性单元的改进,解决了死亡relu问题。
tf.nn.elu:指数线性单元。对relu的改进,能够缓解死亡relu问题。
tf.nn.selu:扩展型指数线性单元。在权重用tf.keras.initializers.lecun_normal初始化前提下能够对神经网络进行自归一化。不可能出现梯度爆炸或者梯度消失问题。需要和Dropout的变种AlphaDropout一起使用。
tf.nn.swish:自门控激活函数。谷歌出品,相关研究指出用swish替代relu将获得轻微效果提升。
gelu:高斯误差线性单元激活函数。在Transformer中表现最好。tf.nn模块尚没有实现该函数。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)