Android : Camera2/HAL3 框架分析
一、Android O上的Treble机制:
在 Android O 中,系统启动时,会启动一个 CameraProvider 服务,它是从 cameraserver 进程中分离出来,作为一个独立进程 android.hardware.camera.provider@2.4-service 用来控制 camera HAL,cameraserver通过 HIDL 机制于camera provider进行通信。HIDL源自于 Android O 版本加入的 Treble 机制,它的主要功能是将 service 与 HAL 隔离,以方便 HAL 部分进行独立升级,类似于 APP 与 Framework 之间的 Binder 通信机制,通过引入一个进程间通信机制而针对不同层级进行解耦(从 Local call 变成了 Remote call)。如下图:
cameraserver 与 provider 这两个进程启动、初始化的调用逻辑,如下图:
二、Camera HAL3的框架更新:
- Application framework:用于给APP提供访问hardware的Camera API2,通过binder来访问camera service。
- AIDL: 基于Binder实现的一个用于让App fw代码访问natice fw代码的接口。其实现存在于下述路径:frameworks/av/camera/aidl/android/hardware。其中:
(1) ICameraService 是相机服务的接口。用于请求连接、添加监听等。
(2) ICameraDeviceUser 是已打开的特定相机设备的接口。应用框架可通过它访问具体设备。
(3) ICameraServiceListener 和 ICameraDeviceCallbacks 分别是从 CameraService 和 CameraDevice 到应用框架的回调。
- Natice framework:frameworks/av/。提供了ICameraService、ICameraDeviceUser、ICameraDeviceCallbacks、ICameraServiceListener等aidl接口的实现。以及camera server的main函数。
- Binder IPC interface:提供进程间通信的接口,APP和CameraService的通信、CameraService和HAL的通信。其中,AIDL、HIDL都是基于Binder实现的。
- Camera Service:frameworks/av/services/camera/。同APP、HAL交互的服务,起到了承上启下的作用。
- HAL:Google的HAL定义了可以让Camera Service访问的标准接口。对于供应商而言,必须要实现这些接口。
1.Camera HAL3 构建连路的过程,如下图(红色虚线是上行路线,黑色虚线则是下行路线):
2.从 App 到 CameraService的调用流程
从 Application 连接到 CameraService,这涉及到 Android 架构中的三个层次:App 层,Framework 层,Runtime 层。其中,App 层直接调用 Framework 层所封装的方法,而 Framework 层需要通过 Binder 远程调用 Runtime 中 CameraService 的函数。
这一部分主要的函数调用逻辑如下图所示:
在 App 中,需要调用打开相机的API如下:
- CameraCharacteristics:描述摄像头的各种特性,我们可以通过CameraManager的getCameraCharacteristics(@NonNull String cameraId)方法来获取。
- CameraDevice:描述系统摄像头,类似于早期的Camera。
- CameraCaptureSession:Session类,当需要拍照、预览等功能时,需要先创建该类的实例,然后通过该实例里的方法进行控制(例如:拍照 capture())。
- CaptureRequest:描述了一次操作请求,拍照、预览等操作都需要先传入CaptureRequest参数,具体的参数控制也是通过CameraRequest的成员变量来设置。
- CaptureResult:描述拍照完成后的结果。
例如打开camera的java代码:
mCameraManager.openCamera(currentCameraId, stateCallback, backgroundHandler);
(1)Framework CameraManager :/frameworks/base/core/java/android/hardware/camera2/CameraManager.java
最初的入口就是 CameraManager 的 openCamera
方法,但通过代码可以看到,它仅仅是调用了 openCameraForUid
方法。
@RequiresPermission(android.Manifest.permission.CAMERA) public void openCamera(@NonNull String cameraId, @NonNull final CameraDevice.StateCallback callback, @Nullable Handler handler) throws CameraAccessException { openCameraForUid(cameraId, callback, handler, USE_CALLING_UID); }
下面的代码忽略掉了一些参数检查相关操作,最终主要调用了 openCameraDeviceUserAsync
方法。
public void openCameraForUid(@NonNull String cameraId, @NonNull final CameraDevice.StateCallback callback, @Nullable Handler handler, int clientUid) throws CameraAccessException { /* Do something in*/ ...... /* Do something out*/ openCameraDeviceUserAsync(cameraId, callback, handler, clientUid); }
参考如下注释分析:
private CameraDevice openCameraDeviceUserAsync(String cameraId, CameraDevice.StateCallback callback, Handler handler, final int uid) throws CameraAccessException { CameraCharacteristics characteristics = getCameraCharacteristics(cameraId); CameraDevice device = null; synchronized (mLock) { ICameraDeviceUser cameraUser = null; android.hardware.camera2.impl.CameraDeviceImpl deviceImpl = //实例化一个 CameraDeviceImpl。构造时传入了 CameraDevice.StateCallback 以及 Handler。 new android.hardware.camera2.impl.CameraDeviceImpl( cameraId, callback, handler, characteristics, mContext.getApplicationInfo().targetSdkVersion); ICameraDeviceCallbacks callbacks = deviceImpl.getCallbacks(); //获取 CameraDeviceCallback 实例,这是提供给远端连接到 CameraDeviceImpl 的接口。 try { if (supportsCamera2ApiLocked(cameraId)) { //HAL3 中走的是这一部分逻辑,主要是从 CameraManagerGlobal 中获取 CameraService 的本地接口,通过它远端调用(采用 Binder 机制) connectDevice 方法连接到相机设备。 //注意返回的 cameraUser 实际上指向的是远端 CameraDeviceClient 的本地接口。 // Use cameraservice's cameradeviceclient implementation for HAL3.2+ devices ICameraService cameraService = CameraManagerGlobal.get().getCameraService(); if (cameraService == null) { throw new ServiceSpecificException( ICameraService.ERROR_DISCONNECTED, "Camera service is currently unavailable"); } cameraUser = cameraService.connectDevice(callbacks, cameraId, mContext.getOpPackageName(), uid); } else { // Use legacy camera implementation for HAL1 devices int id; try { id = Integer.parseInt(cameraId); } catch (NumberFormatException e) { throw new IllegalArgumentException("Expected cameraId to be numeric, but it was: " + cameraId); } Log.i(TAG, "Using legacy camera HAL."); cameraUser = CameraDeviceUserShim.connectBinderShim(callbacks, id); } } catch (ServiceSpecificException e) { /* Do something in */ ...... /* Do something out */ } // TODO: factor out callback to be non-nested, then move setter to constructor // For now, calling setRemoteDevice will fire initial // onOpened/onUnconfigured callbacks. // This function call may post onDisconnected and throw CAMERA_DISCONNECTED if // cameraUser dies during setup. deviceImpl.setRemoteDevice(cameraUser); //将 CameraDeviceClient 设置到 CameraDeviceImpl 中进行管理。 device = deviceImpl; } return device; }
(2)CameraDeviceImpl : /frameworks/base/core/java/android/hardware/camera2/Impl/CameraDeviceImpl.java
在继续向下分析打开相机流程之前,先简单看看调用到的 CameraDeviceImpl 中的setRemoteDevice
方法,主要是将获取到的远端设备保存起来:
/** * Set remote device, which triggers initial onOpened/onUnconfigured callbacks * * <p>This function may post onDisconnected and throw CAMERA_DISCONNECTED if remoteDevice dies * during setup.</p> * */ public void setRemoteDevice(ICameraDeviceUser remoteDevice) throws CameraAccessException { synchronized(mInterfaceLock) { // TODO: Move from decorator to direct binder-mediated exceptions // If setRemoteFailure already called, do nothing if (mInError) return; mRemoteDevice = new ICameraDeviceUserWrapper(remoteDevice); //通过 ICameraDeviceUserWrapper 给远端设备实例加上一层封装。 IBinder remoteDeviceBinder = remoteDevice.asBinder(); //使用 Binder 机制的一些基本设置。 // For legacy camera device, remoteDevice is in the same process, and // asBinder returns NULL. if (remoteDeviceBinder != null) { try { remoteDeviceBinder.linkToDeath(this, /*flag*/ 0); //如果这个binder消失,为标志信息注册一个接收器。 } catch (RemoteException e) { CameraDeviceImpl.this.mDeviceHandler.post(mCallOnDisconnected); throw new CameraAccessException(CameraAccessException.CAMERA_DISCONNECTED, "The camera device has encountered a serious error"); } } mDeviceHandler.post(mCallOnOpened); //需此处触发 onOpened 与 onUnconfigured 这两个回调,每个回调都是通过 mDeviceHandler 启用一个新线程来调用的。 mDeviceHandler.post(mCallOnUnconfigured); } }
(3)Runtime:通过 Binder 机制,我们远端调用了 connectDevice
方法(在 C++ 中称为函数,但说成方法可能更顺口一些),这个方法实现在 CameraService 类中。
(4)CameraService:/frameworks/av/services/camera/libcameraservice/CameraService.cpp
Status CameraService::connectDevice( const sp<hardware::camera2::ICameraDeviceCallbacks>& cameraCb, const String16& cameraId, const String16& clientPackageName, int clientUid, /*out*/ sp<hardware::camera2::ICameraDeviceUser>* device) { ATRACE_CALL(); Status ret = Status::ok(); String8 id = String8(cameraId); sp<CameraDeviceClient> client = nullptr; //此处调用的 connectHelper 方法才真正实现了连接逻辑(HAL1 时最终也调用到这个方法)。需要注意的是,设定的模板类型是 ICameraDeviceCallbacks 以及 CameraDeviceClient。 ret = connectHelper<hardware::camera2::ICameraDeviceCallbacks,CameraDeviceClient>(cameraCb, id, CAMERA_HAL_API_VERSION_UNSPECIFIED, clientPackageName, clientUid, USE_CALLING_PID, API_2, /*legacyMode*/ false, /*shimUpdateOnly*/ false, /*out*/client); if(!ret.isOk()) { logRejected(id, getCallingPid(), String8(clientPackageName), ret.toString8()); return ret; } *device = client; //client 指向的类型是 CameraDeviceClient,其实例则是最终的返回结果。 return ret; }
connectHelper
内容较多,忽略掉我们还无需关注的地方分析:
template<class CALLBACK, class CLIENT> Status CameraService::connectHelper(const sp<CALLBACK>& cameraCb, const String8& cameraId, int halVersion, const String16& clientPackageName, int clientUid, int clientPid, apiLevel effectiveApiLevel, bool legacyMode, bool shimUpdateOnly, /*out*/sp<CLIENT>& device) { binder::Status ret = binder::Status::ok(); String8 clientName8(clientPackageName); /* Do something in */ ...... /* Do something out */ sp<BasicClient> tmp = nullptr; //调用 makeClient 生成 CameraDeviceClient 实例。 if(!(ret = makeClient(this, cameraCb, clientPackageName, cameraId, facing, clientPid, clientUid, getpid(), legacyMode, halVersion, deviceVersion, effectiveApiLevel, /*out*/&tmp)).isOk()) { return ret; } //初始化 CLIENT 实例。注意此处的模板类型 CLIENT 即是 CameraDeviceClient,传入的参数 mCameraProviderManager 则是与 HAL service 有关。 client = static_cast<CLIENT*>(tmp.get()); LOG_ALWAYS_FATAL_IF(client.get() == nullptr, "%s: CameraService in invalid state", __FUNCTION__); err = client->initialize(mCameraProviderManager); /* Do something in */ ...... /* Do something out */ // Important: release the mutex here so the client can call back into the service from its // destructor (can be at the end of the call) device = client; return ret; }
makeClient 主要是根据 API 版本以及 HAL 版本来选择生成具体的 Client 实例,Client 就沿着前面分析下来的路径返回到 CameraDeviceImpl 实例中,被保存到 mRemoteDevice。
Status CameraService::makeClient(const sp<CameraService>& cameraService, const sp<IInterface>& cameraCb, const String16& packageName, const String8& cameraId, int facing, int clientPid, uid_t clientUid, int servicePid, bool legacyMode, int halVersion, int deviceVersion, apiLevel effectiveApiLevel, /*out*/sp<BasicClient>* client) { if (halVersion < 0 || halVersion == deviceVersion) { // Default path: HAL version is unspecified by caller, create CameraClient // based on device version reported by the HAL. switch(deviceVersion) { case CAMERA_DEVICE_API_VERSION_1_0: /* Do something in */ ...... /* Do something out */ case CAMERA_DEVICE_API_VERSION_3_0: case CAMERA_DEVICE_API_VERSION_3_1: case CAMERA_DEVICE_API_VERSION_3_2: case CAMERA_DEVICE_API_VERSION_3_3: case CAMERA_DEVICE_API_VERSION_3_4: if (effectiveApiLevel == API_1) { // Camera1 API route sp<ICameraClient> tmp = static_cast<ICameraClient*>(cameraCb.get()); *client = new Camera2Client(cameraService, tmp, packageName, cameraIdToInt(cameraId), facing, clientPid, clientUid, servicePid, legacyMode); } else { // Camera2 API route : 实例化了 CameraDeviceClient 类作为 Client(注意此处构造传入了 ICameraDeviceCallbacks,这是连接到 CameraDeviceImpl 的远端回调) sp<hardware::camera2::ICameraDeviceCallbacks> tmp = static_cast<hardware::camera2::ICameraDeviceCallbacks*>(cameraCb.get()); *client = new CameraDeviceClient(cameraService, tmp, packageName, cameraId, facing, clientPid, clientUid, servicePid); } break; default: // Should not be reachable ALOGE("Unknown camera device HAL version: %d", deviceVersion); return STATUS_ERROR_FMT(ERROR_INVALID_OPERATION, "Camera device \"%s\" has unknown HAL version %d", cameraId.string(), deviceVersion); } } else { /* Do something in */ ...... /* Do something out */ } return Status::ok(); }
至此,打开相机流程中,从 App 到 CameraService 的调用逻辑基本上就算走完了。
简图总结:
Ps:
- CameraManagerGlobal 是真正的实现层,它与 JAVA 层的 CameraService 创建连接,从而创建相机的连路。
- CameraDeviceImpl 相当于运行上下文,它取代了 Android N 之前的 JNI 层。
3.从 CameraService 到 HAL Service
由于 Android O 中加入了 Treble 机制,CameraServer 一端主体为 CameraService,它将会寻找现存的 Provider service,将其加入到内部的 CameraProviderManager 中进行管理,相关操作都是通过远端调用进行的。
而 Provider service 一端的主体为 CameraProvider,它在初始化时就已经连接到 libhardware 的 Camera HAL 实现层,并以 CameraModule 来进行管理。
进程的启动后,连路的 “载体” 就搭建完成了(需要注意,此时 QCamera3HWI 还未创建),可用下图简单表示:
而在打开相机时,该层的完整连路会被创建出来,主要调用逻辑如下图:
上回讲到,在 CameraService::makeClient 中,实例化了一个 CameraDeviceClient。现在我们就从它的构造函数开始,继续探索打开相机的流程。
这一部分主要活动在 Runtime 层,这里分成 CameraService 与 HAL Service 两侧来分析。
(1)CameraDeviceClient :frameworks\av\services\camera\libcameraservice\api2\CameraDeviceClient.cpp
CameraDeviceClient::CameraDeviceClient(const sp<CameraService>& cameraService, const sp<hardware::camera2::ICameraDeviceCallbacks>& remoteCallback, const String16& clientPackageName, const String8& cameraId, int cameraFacing, int clientPid, uid_t clientUid, int servicePid) : Camera2ClientBase(cameraService, remoteCallback, clientPackageName, cameraId, cameraFacing, clientPid, clientUid, servicePid), //继承它的父类 Camera2ClientBase mInputStream(), mStreamingRequestId(REQUEST_ID_NONE), mRequestIdCounter(0), mPrivilegedClient(false) { char value[PROPERTY_VALUE_MAX]; property_get("persist.camera.privapp.list", value, ""); String16 packagelist(value); if (packagelist.contains(clientPackageName.string())) { mPrivilegedClient = true; } ATRACE_CALL(); ALOGI("CameraDeviceClient %s: Opened", cameraId.string()); }
CameraService 在创建 CameraDeviceClient 之后,会调用它的初始化函数:
//对外提供调用的初始化函数接口 initialize。 status_t CameraDeviceClient::initialize(sp<CameraProviderManager> manager) { return initializeImpl(manager); } //初始化的具体实现函数,模板 TProviderPtr 在此处即是 CameraProviderManager 类。 template<typename TProviderPtr> //首先将父类初始化,注意此处传入了 CameraProviderManager。 status_t CameraDeviceClient::initializeImpl(TProviderPtr providerPtr) { ATRACE_CALL(); status_t res; res = Camera2ClientBase::initialize(providerPtr); if (res != OK) { return res; } //这里是关于 FrameProcessor 的创建与初始化配置等等 String8 threadName; mFrameProcessor = new FrameProcessorBase(mDevice); threadName = String8::format("CDU-%s-FrameProc", mCameraIdStr.string()); mFrameProcessor->run(threadName.string()); mFrameProcessor->registerListener(FRAME_PROCESSOR_LISTENER_MIN_ID, FRAME_PROCESSOR_LISTENER_MAX_ID, /*listener*/this, /*sendPartials*/true); return OK; }
(2)Camera2ClientBase:frameworks\av\services\camera\libcameraservice\common\Camera2ClientBase.cpp
template <typename TClientBase> //模板 TClientBase,在 CameraDeviceClient 继承 Camera2ClientBase 时被指定为 CameraDeviceClientBase。 Camera2ClientBase<TClientBase>::Camera2ClientBase( //构造的相关参数,以及初始化列表,这里面需要注意 TCamCallbacks 在 CameraDeviceClientBase 中被指定为了 ICameraDeviceCallbacks。 const sp<CameraService>& cameraService, const sp<TCamCallbacks>& remoteCallback, const String16& clientPackageName, const String8& cameraId, int cameraFacing, int clientPid, uid_t clientUid, int servicePid): TClientBase(cameraService, remoteCallback, clientPackageName, cameraId, cameraFacing, clientPid, clientUid, servicePid), mSharedCameraCallbacks(remoteCallback), mDeviceVersion(cameraService->getDeviceVersion(TClientBase::mCameraIdStr)), mDeviceActive(false) { ALOGI("Camera %s: Opened. Client: %s (PID %d, UID %d)", cameraId.string(), String8(clientPackageName).string(), clientPid, clientUid); mInitialClientPid = clientPid; mDevice = new Camera3Device(cameraId); //创建了一个 Camera3Device。 LOG_ALWAYS_FATAL_IF(mDevice == 0, "Device should never be NULL here."); }
回去再看看初始化函数:
template <typename TClientBase> //初始化函数接口,真正的实现部分在 initializeImpl 中。 status_t Camera2ClientBase<TClientBase>::initialize(sp<CameraProviderManager> manager) { return initializeImpl(manager); } //TClientBase 对应 CameraDeviceClientBase,而 TProviderPtr 对应的是 CameraProviderManager。 template <typename TClientBase> template <typename TProviderPtr> status_t Camera2ClientBase<TClientBase>::initializeImpl(TProviderPtr providerPtr) { ATRACE_CALL(); ALOGV("%s: Initializing client for camera %s", __FUNCTION__, TClientBase::mCameraIdStr.string()); status_t res; // Verify ops permissions res = TClientBase::startCameraOps(); //调用 CameraDeviceClientBase 的 startCameraOps 方法,检查 ops 的权限。 if (res != OK) { return res; } if (mDevice == NULL) { ALOGE("%s: Camera %s: No device connected", __FUNCTION__, TClientBase::mCameraIdStr.string()); return NO_INIT; } res = mDevice->initialize(providerPtr); //初始化 Camera3Device 的实例,注意此处传入了 CameraProviderManager。 if (res != OK) { ALOGE("%s: Camera %s: unable to initialize device: %s (%d)", __FUNCTION__, TClientBase::mCameraIdStr.string(), strerror(-res), res); return res; } //在 Camera3Device 实例中设置 Notify 回调。 wp<CameraDeviceBase::NotificationListener> weakThis(this); res = mDevice->setNotifyCallback(weakThis); return OK; }
(3)Camera3Device:frameworks\av\services\camera\libcameraservice\device3\Camera3Device.cpp
Camera3Device::Camera3Device(const String8 &id): mId(id), mOperatingMode(NO_MODE), mIsConstrainedHighSpeedConfiguration(false), mStatus(STATUS_UNINITIALIZED), mStatusWaiters(0), mUsePartialResult(false), mNumPartialResults(1), mTimestampOffset(0), mNextResultFrameNumber(0), mNextReprocessResultFrameNumber(0), mNextShutterFrameNumber(0), mNextReprocessShutterFrameNumber(0), mListener(NULL), mVendorTagId(CAMERA_METADATA_INVALID_VENDOR_ID) { ATRACE_CALL(); //在这个观察构造函数中设定了两个回调接口: camera3_callback_ops::notify = &sNotify; camera3_callback_ops::process_capture_result = &sProcessCaptureResult; ALOGV("%s: Created device for camera %s", __FUNCTION__, mId.string()); }
其初始化函数篇幅较长,这里省略掉了关于 RequestMetadataQueue 的相关操作。
status_t Camera3Device::initialize(sp<CameraProviderManager> manager) { ATRACE_CALL(); Mutex::Autolock il(mInterfaceLock); Mutex::Autolock l(mLock); ALOGV("%s: Initializing HIDL device for camera %s", __FUNCTION__, mId.string()); if (mStatus != STATUS_UNINITIALIZED) { CLOGE("Already initialized!"); return INVALID_OPERATION; } if (manager == nullptr) return INVALID_OPERATION; sp<ICameraDeviceSession> session; ATRACE_BEGIN("CameraHal::openSession"); status_t res = manager->openSession(mId.string(), this, //调用CameraProviderManager的openSession方法,开启了远端的Session /*out*/ &session); ATRACE_END(); if (res != OK) { SET_ERR_L("Could not open camera session: %s (%d)", strerror(-res), res); return res; } /* Do something in */ ...... /* Do something out */ return initializeCommonLocked(); }
(4)CameraProviderManager:frameworks\av\services\camera\libcameraservice\common\CameraProviderManager.cpp
status_t CameraProviderManager::openSession(const std::string &id, const sp<hardware::camera::device::V3_2::ICameraDeviceCallback>& callback, /*out*/ sp<hardware::camera::device::V3_2::ICameraDeviceSession> *session) { std::lock_guard<std::mutex> lock(mInterfaceMutex); auto deviceInfo = findDeviceInfoLocked(id, //首先调用 findDeviceInfoLocked,获取 HAL3 相关的 DeviceInfo3 /*minVersion*/ {3,0}, /*maxVersion*/ {4,0}); if (deviceInfo == nullptr) return NAME_NOT_FOUND; auto *deviceInfo3 = static_cast<ProviderInfo::DeviceInfo3*>(deviceInfo); Status status; hardware::Return<void> ret; //通过远端调用 CameraDevice 的 open 方法,创建 CameraDeviceSession 实例并将其本地调用接口通过入参 session 返回。 ret = deviceInfo3->mInterface->open(callback, [&status, &session] (Status s, const sp<device::V3_2::ICameraDeviceSession>& cameraSession) { status = s; if (status == Status::OK) { *session = cameraSession; } }); if (!ret.isOk()) { ALOGE("%s: Transaction error opening a session for camera device %s: %s", __FUNCTION__, id.c_str(), ret.description().c_str()); return DEAD_OBJECT; } return mapToStatusT(status); }
(5)CameraDevice:hardware\interfaces\camera\device\3.2\default\CameraDevice.cpp
CameraDevice 的实例实际上在初始化 HAL Service 之后就存在了。 前面说到,通过 CameraProviderManager 中的 deviceInfo
接口,调用远端 CameraDevice 实例的 open
方法,下面就来看看它的代码实现:
Return<void> CameraDevice::open(const sp<ICameraDeviceCallback>& callback, open_cb _hidl_cb) { Status status = initStatus(); sp<CameraDeviceSession> session = nullptr; if (callback == nullptr) { ALOGE("%s: cannot open camera %s. callback is null!", __FUNCTION__, mCameraId.c_str()); _hidl_cb(Status::ILLEGAL_ARGUMENT, nullptr); return Void(); } if (status != Status::OK) { /* Do something in */ ...... /* Do something out */ } else { mLock.lock(); /* Do something in */ ...... /* Do something out */ /** Open HAL device */ status_t res; camera3_device_t *device; ATRACE_BEGIN("camera3->open"); res = mModule->open(mCameraId.c_str(), //注意 mModule 是在 HAL Service 初始化时就已经配置好的,它对从libhardware库中加载的 Camera HAL 接口进行了一层封装,从这里往下就会一路走到 QCamera3HWI 的构造流程去。 reinterpret_cast<hw_device_t**>(&device)); ATRACE_END(); /* Do something in */ ...... /* Do something out */ //创建 session 并让内部成员 mSession 持有,具体实现的函数为 creatSession。 session = createSession( device, info.static_camera_characteristics, callback); /* Do something in */ ...... /* Do something out */ mSession = session; IF_ALOGV() { session->getInterface()->interfaceChain([]( ::android::hardware::hidl_vec<::android::hardware::hidl_string> interfaceChain) { ALOGV("Session interface chain:"); for (auto iface : interfaceChain) { ALOGV(" %s", iface.c_str()); } }); } mLock.unlock(); } _hidl_cb(status, session->getInterface()); return Void(); }
而 creatSession 中直接创建了一个 CameraDeviceSession。当然在其构造函数中会调用内部的初始化函数,然后会进入 HAL 接口层 QCamera3HWI 的初始化流程,至此,从 CameraService 到 HAL Service 这一部分的打开相机流程就基本走通了。
简图总结:
4.从 HAL Service 到 Camera HAL
在 HAL3 中,Camera HAL 的接口转化层(以及流解析层)由 QCamera3HardwareInterface 担当,而接口层与实现层与 HAL1 中基本没什么差别,都是在 mm_camera_interface.c 与 mm_camera.c 中。
那么接口转化层的实例是何时创建的,又是怎么初始化的,创建它的时候,与接口层、实现层又有什么交互?通过下图展示的主要调用流程:
(1)CameraModule(HAL Servic) : hardware\interfaces\camera\common\1.0\default\CameraModule.cpp
上回说到,CameraDevice::open 的实现中,调用了 mModule->open,即 CameraModule::open,通过代码来看,它做的事并不多,主要是调用 mModule->common.methods->open,来进入下一层级的流程。
而这里则需要注意了,open 是一个函数指针,它指向的是 QCamera2Factory 的 camera_device_open 方法,至于为什么和 QCamera2Factory 有关,这就要回头看 HAL Service 的启动初始化流程了。
int CameraModule::open(const char* id, struct hw_device_t** device) { int res; ATRACE_BEGIN("camera_module->open"); res = filterOpenErrorCode(mModule->common.methods->open(&mModule->common, id, device)); ATRACE_END(); return res; }
(2)QCamera2Factory(Camera HAL):hardware\qcom\camera\qcamera2\QCamera2Factory.cpp
/*=========================================================================== * FUNCTION : camera_device_open * * DESCRIPTION: static function to open a camera device by its ID * * PARAMETERS : * @camera_id : camera ID * @hw_device : ptr to struct storing camera hardware device info * * RETURN : int32_t type of status * NO_ERROR -- success * none-zero failure code *==========================================================================*/ int QCamera2Factory::camera_device_open( const struct hw_module_t *module, const char *id, struct hw_device_t **hw_device) { /* Do something in */ ...... /* Do something out */ #ifdef QCAMERA_HAL1_SUPPORT //注意到这里通过宏定义添加了对 HAL1 的兼容操作。实际上是要调用 cameraDeviceOpen 来进行下一步操作。 if(gQCameraMuxer) rc = gQCameraMuxer->camera_device_open(module, id, hw_device); else #endif rc = gQCamera2Factory->cameraDeviceOpen(atoi(id), hw_device); return rc; } struct hw_module_methods_t QCamera2Factory::mModuleMethods = { .open = QCamera2Factory::camera_device_open, //这里就将前面所说的 open 函数指针指定为了 camera_device_open 这个方法。 };
cameraDeviceOpen
的工作:
/*=========================================================================== * FUNCTION : cameraDeviceOpen * * DESCRIPTION: open a camera device with its ID * * PARAMETERS : * @camera_id : camera ID * @hw_device : ptr to struct storing camera hardware device info * * RETURN : int32_t type of status * NO_ERROR -- success * none-zero failure code *==========================================================================*/ int QCamera2Factory::cameraDeviceOpen(int camera_id, struct hw_device_t **hw_device) { /* Do something in */ ...... /* Do something out */ if ( mHalDescriptors[camera_id].device_version == CAMERA_DEVICE_API_VERSION_3_0 ) { QCamera3HardwareInterface *hw = new QCamera3HardwareInterface(mHalDescriptors[camera_id].cameraId, //首先创建了 QCamera3HardwareInterface 的实例。 mCallbacks); if (!hw) { LOGE("Allocation of hardware interface failed"); return NO_MEMORY; } rc = hw->openCamera(hw_device); //调用实例的 openCamera 方法。 if (rc != 0) { delete hw; } } /* Do something in */ ...... /* Do something out */ return rc; }
(3)QCamera3HardwareInterface : hardware\qcom\camera\qcamera2\hal3\QCamera3HWI.cpp
首先需要注意的是内部成员 mCameraOps
的定义。 在构造实例时,有 mCameraDevice.ops = &mCameraOps;
(关键点)
camera3_device_ops_t QCamera3HardwareInterface::mCameraOps = { .initialize = QCamera3HardwareInterface::initialize, .configure_streams = QCamera3HardwareInterface::configure_streams, .register_stream_buffers = NULL, .construct_default_request_settings = QCamera3HardwareInterface::construct_default_request_settings, .process_capture_request = QCamera3HardwareInterface::process_capture_request, .get_metadata_vendor_tag_ops = NULL, .dump = QCamera3HardwareInterface::dump, .flush = QCamera3HardwareInterface::flush, .reserved = {0}, };
再来继续看看 openCamera
实现:
int QCamera3HardwareInterface::openCamera(struct hw_device_t **hw_device) { /* Do something in */ ...... /* Do something out */ rc = openCamera(); //调用另一个 openCamera 方法,这是具体实现的部分。 if (rc == 0) { *hw_device = &mCameraDevice.common; //打开相机成功后,将设备结构中的 common 部分通过双重指针 hw_device 返回。 } else *hw_device = NULL; /* Do something in */ ...... /* Do something out */ return rc; } int QCamera3HardwareInterface::openCamera() { /* Do something in */ ...... /* Do something out */ rc = camera_open((uint8_t)mCameraId, &mCameraHandle); //这里就开始进入接口层了,调用的是接口层中的 camera_open 接口。注意此处获取到了 mCameraHandle. /* Do something in */ ...... /* Do something out */ rc = mCameraHandle->ops->register_event_notify(mCameraHandle->camera_handle, //注意这里传入了一个 camEvtHandle camEvtHandle, (void *)this); /* Do something in */ ...... /* Do something out */ rc = mCameraHandle->ops->get_session_id(mCameraHandle->camera_handle, &sessionId[mCameraId]); /* Do something in */ ...... /* Do something out */ return NO_ERROR; }
上面是接口转化层中,关于 openCamera
的部分,下面继续看看它的初始化函数。 在前面已经分析过,创建 CameraDeviceSession 实例时,会调用它内部的初始化方法,而这其中包含了调用 QCamera3HWI 的初始化方法 initialize
int QCamera3HardwareInterface::initialize(const struct camera3_device *device, const camera3_callback_ops_t *callback_ops) { LOGD("E"); QCamera3HardwareInterface *hw = reinterpret_cast<QCamera3HardwareInterface *>(device->priv); if (!hw) { LOGE("NULL camera device"); return -ENODEV; } int rc = hw->initialize(callback_ops); //调用了真正实现的初始化逻辑的函数 LOGD("X"); return rc; } int QCamera3HardwareInterface::initialize( const struct camera3_callback_ops *callback_ops) { ATRACE_CALL(); int rc; LOGI("E :mCameraId = %d mState = %d", mCameraId, mState); pthread_mutex_lock(&mMutex); // Validate current state switch (mState) { case OPENED: /* valid state */ break; default: LOGE("Invalid state %d", mState); rc = -ENODEV; goto err1; } rc = initParameters(); //参数(mParameters)初始化,注意这里的参数和 CameraParameter 是不同的,它是 metadata_buffer 相关参数的结构。 if (rc < 0) { LOGE("initParamters failed %d", rc); goto err1; } mCallbackOps = callback_ops; //这里将 camera3_call_back_ops 与 mCallbackOps 关联了起来。 mChannelHandle = mCameraHandle->ops->add_channel( //获取 mChannelHandle 这一句柄,调用的方法实际是 mm_camera_interface.c 中的 mm_camera_intf_add_channel。 mCameraHandle->camera_handle, NULL, NULL, this); if (mChannelHandle == 0) { LOGE("add_channel failed"); rc = -ENOMEM; pthread_mutex_unlock(&mMutex); return rc; } pthread_mutex_unlock(&mMutex); mCameraInitialized = true; mState = INITIALIZED; LOGI("X"); return 0; err1: pthread_mutex_unlock(&mMutex); return rc; }
(4)mm_camera_interface.c(接口层) :hardware\qcom\camera\qcamera2\stack\mm-camera-interface\src\mm_camera_interface.c
camera_open
中干的事也不多,省略掉了关于为 cam_obj
分配内存以及初始化的部分。实际上是调用实现层中的 mm_camera_open
来真正实现打开相机设备的操作,设备的各种信息都填充到 cam_obj
结构中。
int32_t camera_open(uint8_t camera_idx, mm_camera_vtbl_t **camera_vtbl) { int32_t rc = 0; mm_camera_obj_t *cam_obj = NULL; /* Do something in */ ...... /* Do something out */ rc = mm_camera_open(cam_obj); /* Do something in */ ...... /* Do something out */ }
而关于初始化时调用的 mm_camera_intf_add_channel
代码如下:
static uint32_t mm_camera_intf_add_channel(uint32_t camera_handle, mm_camera_channel_attr_t *attr, mm_camera_buf_notify_t channel_cb, void *userdata) { uint32_t ch_id = 0; mm_camera_obj_t * my_obj = NULL; LOGD("E camera_handler = %d", camera_handle); pthread_mutex_lock(&g_intf_lock); my_obj = mm_camera_util_get_camera_by_handler(camera_handle); if(my_obj) { pthread_mutex_lock(&my_obj->cam_lock); pthread_mutex_unlock(&g_intf_lock); ch_id = mm_camera_add_channel(my_obj, attr, channel_cb, userdata); //通过调用实现层的 mm_camera_add_channel 来获取一个 channel id,也就是其句柄。 } else { pthread_mutex_unlock(&g_intf_lock); } LOGD("X ch_id = %d", ch_id); return ch_id; }
(5)mm_camera.c(实现层) :hardware\qcom\camera\qcamera2\stack\mm-camera-interface\src\mm_camera.c
终于来到最底层的实现了,mm_camera_open
主要工作是填充 my_obj
,并且启动、初始化一些线程相关的东西,关于线程的部分我这里就省略掉了。
int32_t mm_camera_open(mm_camera_obj_t *my_obj) { char dev_name[MM_CAMERA_DEV_NAME_LEN]; int32_t rc = 0; int8_t n_try=MM_CAMERA_DEV_OPEN_TRIES; uint8_t sleep_msec=MM_CAMERA_DEV_OPEN_RETRY_SLEEP; int cam_idx = 0; const char *dev_name_value = NULL; int l_errno = 0; pthread_condattr_t cond_attr; LOGD("begin\n"); if (NULL == my_obj) { goto on_error; } dev_name_value = mm_camera_util_get_dev_name(my_obj->my_hdl); //此处调用的函数是为了获取 my_obj 的句柄,这里不深入分析。 if (NULL == dev_name_value) { goto on_error; } snprintf(dev_name, sizeof(dev_name), "/dev/%s", dev_name_value); sscanf(dev_name, "/dev/video%d", &cam_idx); LOGD("dev name = %s, cam_idx = %d", dev_name, cam_idx); do{ n_try--; errno = 0; my_obj->ctrl_fd = open(dev_name, O_RDWR | O_NONBLOCK); //读取设备文件的文件描述符,存到 my_obj->ctrl_fd 中。 l_errno = errno; LOGD("ctrl_fd = %d, errno == %d", my_obj->ctrl_fd, l_errno); if((my_obj->ctrl_fd >= 0) || (errno != EIO && errno != ETIMEDOUT) || (n_try <= 0 )) { break; } LOGE("Failed with %s error, retrying after %d milli-seconds", strerror(errno), sleep_msec); usleep(sleep_msec * 1000U); }while (n_try > 0); if (my_obj->ctrl_fd < 0) { LOGE("cannot open control fd of '%s' (%s)\n", dev_name, strerror(l_errno)); if (l_errno == EBUSY) rc = -EUSERS; else rc = -1; goto on_error; } else { mm_camera_get_session_id(my_obj, &my_obj->sessionid); //成功获取到文件描述符后,就要获取 session 的 id 了。 LOGH("Camera Opened id = %d sessionid = %d", cam_idx, my_obj->sessionid); } /* Do something in */ ...... /* Do something out */ /* unlock cam_lock, we need release global intf_lock in camera_open(), * in order not block operation of other Camera in dual camera use case.*/ pthread_mutex_unlock(&my_obj->cam_lock); return rc; }
初始化的相关部分,mm_camera_add_channel
代码如下:
uint32_t mm_camera_add_channel(mm_camera_obj_t *my_obj, mm_camera_channel_attr_t *attr, mm_camera_buf_notify_t channel_cb, void *userdata) { mm_channel_t *ch_obj = NULL; uint8_t ch_idx = 0; uint32_t ch_hdl = 0; //从现有的 Channel 中找到第一个状态为 NOTUSED 的,获取到 ch_obj 中 for(ch_idx = 0; ch_idx < MM_CAMERA_CHANNEL_MAX; ch_idx++) { if (MM_CHANNEL_STATE_NOTUSED == my_obj->ch[ch_idx].state) { ch_obj = &my_obj->ch[ch_idx]; break; } } /*初始化 ch_obj 结构。首先调用 mm_camera_util_generate_handler 为其生成一个句柄(也是该函数的返回值), *然后将状态设置为 STOPPED,注意这里还保存了 my_obj 的指针及其 session id,最后调用 mm_channel_init 完成了 Channel 的初始化。*/ if (NULL != ch_obj) { /* initialize channel obj */ memset(ch_obj, 0, sizeof(mm_channel_t)); ch_hdl = mm_camera_util_generate_handler(ch_idx); ch_obj->my_hdl = ch_hdl; ch_obj->state = MM_CHANNEL_STATE_STOPPED; ch_obj->cam_obj = my_obj; pthread_mutex_init(&ch_obj->ch_lock, NULL); ch_obj->sessionid = my_obj->sessionid; mm_channel_init(ch_obj, attr, channel_cb, userdata); } pthread_mutex_unlock(&my_obj->cam_lock); return ch_hdl; }
简图总结:
总而言之,上面这一顿操作下来后,相机从上到下的整个连路就已经打通,接下来应该只要 APP 按照流程下发 Preview 的 Request 就可以开始获取预览数据了。
三、核心概念:Request
request是贯穿camera2数据处理流程最为重要的概念,应用框架是通过向camera子系统发送request来获取其想要的result。
request有下述几个重要特征:
- 一个request可以对应一系列的result。
- request应当包含所有必要的配置信息,存放于metadata中。如:分辨率和像素格式;sensor、镜头、闪光等的控制信息;3A 操作模式;RAW 到 YUV 处理控件;以及统计信息的生成等。
- request需要携带对应的surface(也就是框架里面的stream),用于接收返回的图像。
- 多个request可以同时处于in-flight状态,并且submit request是non-blocking方式的。也就是说,上一个request没有处理完,也可以submit新的request。
- 队列中request的处理总是按照FIFO的形式。
- snapshot的request比preview的request拥有更高的优先级。
1.request的整体处理流程如下图:
open 流程(黑色箭头线条) CameraManager注册AvailabilityCallback回调,用于接收相机设备的可用性状态变更的通知。 CameraManager通过调用getCameraIdList()获取到当前可用的camera id,通过getCameraCharacteristcs()函数获取到指定相机设备的特性。 CameraManager调用openCamera()打开指定相机设备,并返回一个CameraDevice对象,后续通过该CameraDevice对象操控具体的相机设备。 使用CameraDevice对象的createCaptureSession()创建一个session,数据请求(预览、拍照等)都是通过session进行。在创建session时,需要提供Surface作为参数,用于接收返回的图像。 configure stream流程(蓝色箭头线条) 申请Surface,如上图的OUTPUT STREAMS DESTINATIONS框,用于在创建session时作为参数,接收session返回的图像。 创建session后,surface会被配置成框架的stream。在框架中,stream定义了图像的size及format。 每个request都需要携带target surface用于指定返回的图像是归属到哪个被configure的stream的。 request处理流程(橙色箭头线条) CameraDevice对象通过createCaptureRequest()来创建request,每个reqeust都需要有surface和settings(settings就是metadata,request包含的所有配置信息都是放在metadata中的)。 使用session的capture()、captureBurst()、setStreamingRequest()、setStreamingBurst()等api可以将request发送到框架。 预览的request,通过setStreamingRequest()、setStreamingBurst()发送,仅调用一次。将request set到repeating request list里面。只要pending request queue里面没有request,就将repeating list里面的request copy到pending queue里面。 拍照的request,通过capture()、captureBurst()发送,每次需要拍照都会调用。每次触发,都会直接将request入到pending request queue里面,所以拍照的request比预览的request的优先级更高。 in-progress queue代表当前正在处理的request的queue,每处理完一个,都会从pending queue里面拿出来一个新的request放到这里。 数据返回流程(紫色箭头线条) 硬件层面返回的数据会放到result里面返回,会通过session的capture callback回调响应。
2.request在HAL的处理方式
(1)framework发送异步的request到hal。
(2)hal必须顺序处理request,对于每一个request都要返回timestamp(shutter,也就是帧的生成时间)、metadata、image buffers。
(3)对于request引用的每一类steam,必须按FIFO的方式返回result。比如:对于预览的stream,result id 9必须要先于result id 10返回。但是拍照的stream,当前可以只返回到result id 7,因为拍照和预览用的stream不一样。
(4)hal需要的信息都通过request携带的metadata接收,hal需要返回的信息都通过result携带的metadata返回。
HAL处理request的整体流程如下图。
request处理流程(黑色箭头线条) framework异步地submit request到hal,hal依次处理,并返回result。 每个被submit到hal的request都必须携带stream。stream分为input stream和output stream:input stream对应的buffer是已有图像数据的buffer,hal对这些buffer进行reprocess;output stream对应的buffer是empty buffer,hal将生成的图像数据填充的这些buffer里面。 input stream处理流程(图像的INPUT STREAM 1) request携带input stream及input buffer到hal。 hal进行reprocess,然后新的图像数据重新填充到buffer里面,返回到framework。 output stream处理流程(图像的OUTPUT STREAM 1…N) request携带output stream及output buffer到hal。 hal经过一系列模块的的处理,将图像数据写到buffer中,返回到frameowork。
-end-
posted on 2019-04-03 21:20 sheldon_blogs 阅读(28582) 评论(1) 编辑 收藏 举报