区块链兄弟社区,区块链技术专业问答先行者,中国区块链技术爱好者聚集地
作者:吴寿鹤
来源:区块链兄弟
原文链接:www.blockchainbrother.com/article/5
著权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
以太坊是什么?
以太坊是一个全新开放的区块链平台,它允许任何人在平台中建立和使用通过区块链技术运行的去中心化应用。就像比特币一样,以太坊不受任何人控制,也不归任何人所有——它是一个开放源代码项目,由全球范围内的很多人共同创建。和比特币协议有所不同的是,以太坊的设计十分灵活,极具适应性。在以太坊平台上创立新的应用十分简便,随着Homestead的发布,任何人都可以安全地使用该平台上的应用。
下一代区块链
区块链技术是比特币的底层技术,这一技术第一次被描述是在中本聪2008年发表的白皮书“比特币:点对点电子现金系统”中。区块链技术更多的一般性用途在原书中已经有所讨论,但直到几年后,区块链技术才作为通用术语出现。一个区块链是一个分布式计算架构,里面的每个网络节点执行并记录相同的交易,交易被分组为区块。一次只能增加一个区块,每个区块有一个数学证明来保证新的区块与之前的区块保持先后顺序。这样一来,区块链的“分布式数据库”就能和整个网络保持一致。个体用户与总账的互动(交易)受到安全的密码保护。由数学执行并编码到协议中的经济激励因素刺激着维持和验证网络的节点。
在比特币中,分布式数据库被设想为一个账户余额表,一个总账,交易就是通过比特币的转移以实现个体之间无需信任基础的金融活动。但是随着比特币吸引了越来越多开发者和技术专家的注意,新的项目开始将比特币网络用于有价代币转移之外的其他用途。其中很多都采用了“代币”的形式——以原始比特币协议为基础,增加了新的特征或功能,采用各自加密货币的独立区块链。在2013年末,以太坊的发明者Vitalik Buterin建议能够通过程序重组来运行任意复杂运算的单个区块链应该包含其他的程序。
2014年,以太坊的创始人Vitalik Buterin, Gavin Wood和Jeffrey Wilcke开始研究新一代区块链,试图实现一个总体上完全无需信任基础的智能合约平台。
以太坊虚拟机
以太坊是可编程的区块链。它并不是给用户一系列预先设定好的操作(例如比特币交易),而是允许用户按照自己的意愿创建复杂的操作。这样一来,它就可以作为多种类型去中心化区块链应用的平台,包括加密货币在内但并不仅限于此。
以太坊狭义上是指一系列定义去中心化应用平台的协议,它的核心是以太坊虚拟机(“EVM”),可以执行任意复杂算法的编码。在计算机科学术语中,以太坊是“图灵完备的”。开发者能够使用现有的JavaScript和Python等语言为模型的其他友好的编程语言,创建出在以太坊模拟机上运行的应用。
和其他区块链一样,以太坊也有一个点对点网络协议。以太坊区块链数据库由众多连接到网络的节点来维护和更新。每个网络节点都运行着以太坊模拟机并执行相同的指令。因此,人们有时形象地称以太坊为“世界电脑”。
这个贯穿整个以太坊网络的大规模并行运算并不是为了使运算更高效。实际上,这个过程使得在以太坊上的运算比在传统“电脑”上更慢更昂贵。然而,每个以太坊节点都运行着以太坊虚拟机是为了保持整个区块链的一致性。去中心化的一致使以太坊有极高的故障容错性,保证零停机,而且可以使存储在区块链上的数据保持永远不变且抗审查。
以太坊平台本身没有特点,没有价值性。和编程语言相似,它由企业家和开发者决定其用途。不过很明显,某些应用类型较之其他更能从以太坊的功能中获益。以太坊尤其适合那些在点与点之间自动进行直接交互或者跨网络促进小组协调活动的应用。例如,协调点对点市场的应用,或是复杂财务合约的自动化。比特币使个体能够不借助金融机构、银行或政府等其他中介来进行货币交换。以太坊的影响可能更为深远。理论上,任何复杂的金融活动或交易都能在以太坊上用编码自动且可靠地进行。除金融类应用外,任何对信任、安全和持久性要求较高的应用场景——比如资产注册、投票、管理和物联网——都会大规模地受到以太坊平台影响。
以太坊如何工作?
以太坊合并了很多对比特币用户来说十分熟悉的特征和技术,同时自己也进行了很多修正和创新。比特币区块链纯粹是一个关于交易的列表,而以太坊的基础单元是账户。以太坊区块链跟踪每个账户的状态,所有以太坊区块链上的状态转换都是账户之间价值和信息的转移。账户分为两类:
- 外部账户(EOA),由私人密码控制
- 合约账户,由它们的合约编码控制,只能由外部账户“激活”
对于大部分用户来说,两者基本的区别在于外部账户是由人类用户掌控——因为他们能够控制私钥,进而控制外部账户。而合约账户则是由内部编码管控。如果他们是被人类用户“控制”的,那也是因为程序设定它们被具有特定地址的外部账户控制,进而被持有私钥控制外部账户的人控制着。“智能合约”这个流行的术语指的是在合约账户中编码——交易被发送给该账户时所运行的程序。用户可以通过在区块链中部署编码来创建新的合约。
只有当外部账户发出指令时,合约账户才会执行相应的操作。所以合约账户不可能自发地执行诸如任意数码生成或应用程序界面调用等操作—只有受外部账户提示时,它才会做这些事。这是因为以太坊要求节点能够与运算结果保持一致,这就要求保证严格确定执行。
和比特币一样,以太坊用户必须向网络支付少量交易费用。这可以使以太坊区块链免受无关紧要或恶意的运算任务干扰,比如分布式拒绝服务(DDoS)攻击或无限循环 。交易的发送者必须在激活的“程序”每一步付款,包括运算和记忆储存。费用通过以太坊自有的有价代币,以太币的形式支付。
交易费用由节点收集,节点使网络生效。这些“矿工”就是以太坊网络中收集、传播、确认和执行交易的节点。矿工们将交易分组——包括许多以太坊区块链中账户“状态”的更新——分成的组被称为“区块”,矿工们会互相竞争,以使他们的区块可以添加到下一个区块链上。矿工们每挖到一个成功的区块就会得到以太币奖励。这就为人们带来了经济激励,促使人们为以太坊网络贡献硬件和电力。
和比特币网络一样,矿工们有解决复杂数学问题的任务以便成功地“挖”到区块。这被称为“工作量证明”。一个运算问题,如果在算法上解决,比验证解决方法需要更多数量级的资源,那么它就是工作证明的极佳选择。为防止比特币网络中已经发生的,专门硬件(例如特定用途集成电路)造成的中心化现象,以太坊选择了难以存储的运算问题。如果问题需要存储器和CPU,事实上理想的硬件是普通的电脑。这就使以太坊的工作量证明具有抗特定用途集成电路性,和比特币这种由专门硬件控制挖矿的区块链相比,能够带来更加去中心化的安全分布。
以太坊核心概念
以太坊虚拟机(EVM)
以太坊虚拟机(EVM)是以太坊中智能合约的运行环境。它不仅被沙箱封装起来,事实上它被完全隔离,也就是说运行在EVM内部的代码不能接触到网络、文件系统或者其它进程。甚至智能合约之间也只有有限的调用。
账户(Accounts)
以太坊中有两类账户,它们共用同一个地址空间。外部账户,该类账户被公钥-私钥对控制。合约账户,该类账户被存储在账户中的代码控制。 外部账户的地址是由公钥决定的,合约账户的地址是在创建合约时确定的(这个地址由合约创建者的地址和该地址发出过的交易数量计算得到,地址发出过的交易数量也被称作”nonce”)
两类账户唯一的区别是:合约账户存储了代码,外部账户则没有。
每个账户有一个key-value形式的持久化存储。key,value的长度都是256bit。
另外,每个账户都有一个以太币余额(单位是“Wei”),该账户余额可以通过向它发送带有以太币的交易来改变。
交易(Transactions)
一笔交易是一条消息,从一个账户发送到另一个账户。交易可以包含二进制数据(payload)和以太币。
如果目标账户包含代码,该代码和输入数据会被执行。
如果目标账户是零账户(账户地址是0),交易将创建一个新合约。正如上文所讲,这个合约地址不是零地址,而是由合约创建者的地址和该地址发出过的交易数量计算得到。创建合约交易的payload被当作EVM字节码执行。执行的输出做为合约代码被永久存储。这意味着,为了创建一个合约,你不需要向合约发送真正的合约代码,而是发送能够返回真正代码的代码。
Gas
以太坊上的每笔交易都会被收取一定数量的gas,gas的目的是限制执行交易所需的工作量,同时为执行支付费用。当EVM执行交易时,gas将按照特定规则被逐渐消耗。
gas price(gas价格,以太币计)是由交易创建者设置的,发送账户需要预付的交易费用 = gas price * gas amount。 如果执行结束还有gas剩余,这些gas将被返还给发送账户。
无论执行到什么位置,一旦gas被耗尽(比如降为负值),将会触发一个out-of-gas异常。当前调用帧所做的所有状态修改都将被回滚。
存储,主存和栈(Storage, Memory and the Stack)
每个账户有一块持久化内存区域被称为存储。其形式为key-value,key和value的长度均为256比特。在合约里,不能遍历账户的存储。相对于另外两种,存储的读操作相对来说开销较大,修改存储更甚。一个合约只能对它自己的存储进行读写。
第二个内存区被称为主存。合约执行每次消息调用时,都有一块新的,被清除过的主存。主存可以以字节粒度寻址,但是读写粒度为32字节(256比特)。操作主存的开销随着其增长而变大(平方级别)。
EVM不是基于寄存器,而是基于栈的虚拟机。因此所有的计算都在一个被称为栈的区域执行。栈最大有1024个元素,每个元素256比特。对栈的访问只限于其顶端,方式为:允许拷贝最顶端的16个元素中的一个到栈顶,或者是交换栈顶元素和下面16个元素中的一个。所有其他操作都只能取最顶的两个(或一个,或更多,取决于具体的操作)元素,并把结果压在栈顶。当然可以把栈上的元素放到存储或者主存中。但是无法只访问栈上指定深度的那个元素,在那之前必须要把指定深度之上的所有元素都从栈中移除才行。
指令集(Instruction Set)
EVM的指令集被刻意保持在最小规模,以尽可能避免可能导致共识问题的错误实现。所有的指令都是针对256比特这个基本的数据类型的操作。具备常用的算术,位,逻辑和比较操作。也可以做到条件和无条件跳转。此外,合约可以访问当前区块的相关属性,比如它的编号和时间戳。
消息调用(Message Calls)
合约可以通过消息调用的方式来调用其它合约或者发送以太币到非合约账户。消息调用和交易非常类似,它们都有一个源,一个目标,数据负载,以太币,gas和返回数据。事实上每个交易都可以被认为是一个顶层消息调用,这个消息调用会依次产生更多的消息调用。
一个合约可以决定剩余gas的分配。比如内部消息调用时使用多少gas,或者期望保留多少gas。如果在内部消息调用时发生了out-of-gas异常(或者其他异常),合约将会得到通知,一个错误码被压在栈上。这种情况只是内部消息调用的gas耗尽。在solidity中,这种情况下发起调用的合约默认会触发一个人工异常。这个异常会打印出调用栈。
就像之前说过的,被调用的合约(发起调用的合约也一样)会拥有崭新的主存并能够访问调用的负载。调用负载被存储在一个单独的被称为calldata的区域。调用执行结束后,返回数据将被存放在调用方预先分配好的一块内存中。
调用层数被限制为1024,因此对于更加复杂的操作,我们应该使用循环而不是递归。
代码调用和库(Delegatecall / Callcode and Libraries)
存在一种特殊类型的消息调用,被称为callcode。它跟消息调用几乎完全一样,只是加载自目标地址的代码将在发起调用的合约上下文中运行。
这意味着一个合约可以在运行时从另外一个地址动态加载代码。存储,当前地址和余额都指向发起调用的合约,只有代码是从被调用地址获取的。
这使得Solidity可以实现”库“。可复用的库代码可以应用在一个合约的存储上,可以用来实现复杂的数据结构。
日志(Logs)
在区块层面,可以用一种特殊的可索引的数据结构来存储数据。这个特性被称为日志,Solidity用它来实现事件。合约创建之后就无法访问日志数据,但是这些数据可以从区块链外高效的访问。因为部分日志数据被存储在布隆过滤器(Bloom filter) 中,我们可以高效并且安全的搜索日志,所以那些没有下载整个区块链的网络节点(轻客户端)也可以找到这些日志。
创建(Create)
合约甚至可以通过一个特殊的指令来创建其他合约(不是简单的向零地址发起调用)。创建合约的调用跟普通的消息调用的区别在于,负载数据执行的结果被当作代码,调用者/创建者在栈上得到新合约的地址。
自毁(Selfdestruct)
只有在某个地址上的合约执行自毁操作时,合约代码才会从区块链上移除。合约地址上剩余的以太币会发送给指定的目标,然后其存储和代码被移除。 注意,即使一个合约的代码不包含自毁指令,依然可以通过代码调用(callcode)来执行这个操作。
文章发布只为分享区块链技术内容,版权归原作者所有,观点仅代表作者本人,绝不代表区块链兄弟赞同其观点或证实其描述