blj28

导航

LINUX串口相关设置详解

 

fd=open(dev,O_RDWR|O_NOCTTY|O_NDELAY); //fd为打开的终端文件描述符
if(fd < 0)
cout << dev <<"open error\n" <<endl;

 

fcntl(fd, F_SETFL, FNDELAY); //标志FNDELAY可以保证read函数在端口上读不到字符的时候返回0
//fcntl(fd, F_SETFL, 0); //回到正常(阻塞)模式
————————————————
版权声明:本文为CSDN博主「花洛兮灬」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq413886183/article/details/108242610

 

 

Linux串口数据收发代码

 

 编译生成a.out 后执行

./a.out /dev/ttySTM1 38400 8 0 1 0

代表  打开/dev/ttySTM1 以波特率:38400 数据位8 校验位无 停止位1   接受数据的方式(1代表发送,0代表接收) 

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <termio.h>
#include <time.h>
 
 
#define MAX_BUF_SIZE     2048
char buf[MAX_BUF_SIZE+2];
 
#define MY_END_CHAR      0x13
 
 
int setup_port(int fd, int baud, int databits, int parity, int stopbits);
int reset_port(int fd);
int read_data(int fd, void *buf, int len);
int write_data(int fd, void *buf, int len);
void print_usage(char *program_name);
 
 
int main(int argc, char *argv[]) //./a.out /dev/ttyS3 38400 8 0 1 0
{
    int fd;
    int baud;
    int len;
    int count;
    int i;
    int databits;
    int stopbits;
    int parity;
    int read_or_write;
 
 
    if (argc != 7) {
        print_usage(argv[0]);
        return 1;
    }
 
    baud = atoi(argv[2]);
    if ((baud < 0) || (baud > 921600)) {
        fprintf(stderr, "Invalid baudrate!\n");
        return 1;
    }
 
    databits = atoi(argv[3]);
    if ((databits < 5) || (databits > 8)) {
        fprintf(stderr, "Invalid databits!\n");
        return 1;
    }
 
    parity = atoi(argv[4]);
    if ((parity < 0) || (parity > 2)) {
        fprintf(stderr, "Invalid parity!\n");
        return 1;
    }
 
    stopbits = atoi(argv[5]);
    if ((stopbits < 1) || (stopbits > 2)) {
        fprintf(stderr, "Invalid stopbits!\n");
        return 1;
    }
 
    read_or_write = atoi(argv[6]);
 
    fd = open(argv[1], O_RDWR, 0);
    if (fd < 0) {
        fprintf(stderr, "open <%s> error %s\n", argv[1], strerror(errno));
        return 1;
    }
 
    if (setup_port(fd, baud, databits, parity, stopbits)) {
        fprintf(stderr, "setup_port error %s\n", strerror(errno));
        close(fd);
        return 1;
    }
 
    count = 0;
 
    if (read_or_write) {
        fprintf(stderr, "Begin to send:\n");
 
        while ( (len = read(0, buf, MAX_BUF_SIZE)) > 0 ) {
            if (len == 1) {
                buf[0] = MY_END_CHAR;
                buf[1] = 0;
                write_data(fd, buf, len);
                break;
            }
 
            
            i = write_data(fd, buf, len);
            if (i == 0) {
                fprintf(stderr, "Send data error!\n");
                break;
            }
 
            //count += len;
            //fprintf(stderr, "Send %d bytes\n", len);
        }
 
    } else {
 
        fprintf(stderr, "Begin to recv:\n");
    int x = 0;
        len = MAX_BUF_SIZE;
 
        while (1) {
            
            i = read_data(fd, buf, len);
            if (i > 0) {
                //count += i;
                //fprintf(stderr, "Recv %d byte\n", i);
        for(x=0;x<i;x++)
                fprintf(stderr,"%02X", buf[x]);
                if (buf[i-1] == MY_END_CHAR) {
                    break;
                }
            }
        }
    }
 
    reset_port(fd);
    close(fd);
 
    return 0;
}
 
 
static int baudflag_arr[] = {
    B921600, B460800, B230400, B115200, B57600, B38400,
    B19200,  B9600,   B4800,   B2400,   B1800,  B1200,
    B600,    B300,    B150,    B110,    B75,    B50
};
static int speed_arr[] = {
    921600,  460800,  230400,  115200,  57600,  38400,
    19200,   9600,    4800,    2400,    1800,   1200,
    600,     300,     150,     110,     75,     50
};
 
 
int speed_to_flag(int speed)
{
    int i;
 
    for (i = 0;  i < sizeof(speed_arr)/sizeof(int);  i++) {
        if (speed == speed_arr[i]) {
            return baudflag_arr[i];
        }
    }
 
    fprintf(stderr, "Unsupported baudrate, use 9600 instead!\n");
    return B9600;
}
 
 
static struct termio oterm_attr;
 
int setup_port(int fd, int baud, int databits, int parity, int stopbits)
{
    struct termio term_attr;
 
    
    if (ioctl(fd, TCGETA, &term_attr) < 0) {
        return -1;
    }
 
    
    memcpy(&oterm_attr, &term_attr, sizeof(struct termio));
 
    term_attr.c_iflag &= ~(INLCR | IGNCR | ICRNL | ISTRIP);
    term_attr.c_oflag &= ~(OPOST | ONLCR | OCRNL);
    term_attr.c_lflag &= ~(ISIG | ECHO | ICANON | NOFLSH);
    term_attr.c_cflag &= ~CBAUD;
    term_attr.c_cflag |= CREAD | speed_to_flag(baud);
 
    
    term_attr.c_cflag &= ~(CSIZE);
    switch (databits) {
        case 5:
            term_attr.c_cflag |= CS5;
            break;
 
        case 6:
            term_attr.c_cflag |= CS6;
            break;
 
        case 7:
            term_attr.c_cflag |= CS7;
            break;
 
        case 8:
        default:
            term_attr.c_cflag |= CS8;
            break;
    }
 
    
    switch (parity) {
        case 1:  
            term_attr.c_cflag |= (PARENB | PARODD);
            break;
 
        case 2:  
            term_attr.c_cflag |= PARENB;
            term_attr.c_cflag &= ~(PARODD);
            break;
 
        case 0:  
        default:
            term_attr.c_cflag &= ~(PARENB);
            break;
    }
 
 
    
    switch (stopbits) {
        case 2:  
            term_attr.c_cflag |= CSTOPB;
            break;
 
        case 1:  
        default:
            term_attr.c_cflag &= ~CSTOPB;
            break;
    }
 
    term_attr.c_cc[VMIN] = 1;
    term_attr.c_cc[VTIME] = 0;
 
    if (ioctl(fd, TCSETAW, &term_attr) < 0) {
        return -1;
    }
 
    if (ioctl(fd, TCFLSH, 2) < 0) {
        return -1;
    }
 
    return 0;
}
 
 
int read_data(int fd, void *buf, int len)
{
    int count;
    int ret;
 
    ret = 0;
    count = 0;
 
    //while (len > 0) {
 
    ret = read(fd, (char*)buf + count, len);
    if (ret < 1) {
        fprintf(stderr, "Read error %s\n", strerror(errno));
        //break;
    }
 
    count += ret;
    len = len - ret;
 
    //}
 
    *((char*)buf + count) = 0;
    return count;
}
 
 
int write_data(int fd, void *buf, int len)
{
    int count;
    int ret;
 
    ret = 0;
    count = 0;
 
    while (len > 0) {
 
        ret = write(fd, (char*)buf + count, len);
        if (ret < 1) {
            fprintf(stderr, "Write error %s\n", strerror(errno));
            break;
        }
 
        count += ret;
        len = len - ret;
    }
 
    return count;
}
 
 
void print_usage(char *program_name)
{
    fprintf(stderr,
            "*************************************\n"
            "  A Simple Serial Port Test Utility\n"
            "*************************************\n\n"
            "Usage:\n  %s <device> <baud> <databits> <parity> <stopbits> <read_or_write>\n"
            "       databits: 5, 6, 7, 8\n"
            "       parity: 0(None), 1(Odd), 2(Even)\n"
            "       stopbits: 1, 2\n"
            "       read_or_write: 0(read), 1(write)\n"
            "Example:\n  %s /dev/ttyS0 9600 8 0 1 0\n\n",
            program_name, program_name
           );
}
 
 
int reset_port(int fd)
{
    if (ioctl(fd, TCSETAW, &oterm_attr) < 0) {
        return -1;
    }
 
    return 0;
}

 

 

 

Linux下串口的设置命令

 

查看串口波特率等信息:
stty -F /dev/ttyS0 -a #ttyS0为要查看的串口

 

设置串口参数:
stty -F /dev/ttyS0 ispeed 115200 ospeed 115200 cs8
该命令将串口1(/dev/ttyS0)设置成115200波特率,8位数据模式。
一般情况下设置这两个参数就可以了,如果显示数据乱码,可能还需要设置其它参数,使用man查看stty其它设置选项。

 

查看串口接收数据:
cat /dev/ttyS0

 

16进制查看串口接收数据:

 

hexdump -C /dev/ttyO1

 

向串口发数据:

 

echo "test" > /dev/ttyS0

 

注意:并不是所有的Linux系统都支持使用echo cat 指令测试串口

 

查看串口信息:

 

setserial -g /dev/ttyS2

 

/dev/ttyS2, UART: unknown, Port: 0x03e8, IRQ: 4 1 #!/usr/bin/expect 2 #-------------------------------------------------- about us

使用shell脚本实现数据收发

#!/usr/bin/expect

# set port /dev/ttyUSB3
set port [lindex $argv 0]
set cmd [lindex $argv 1]

set timeout 1
spawn -noecho microcom $port
expect {
    timeout {send $cmd\r}
}

set timeout 3

expect {
    "\r\n" {exit 0}
    timeout {}
}

expect eof
 1 #!/bin/sh
 2 
 3 stty -F /dev/ttyUSB0 115200             #CONFIGURE SERIAL PORT
 4 exec 3</dev/ttyUSB0                     #REDIRECT SERIAL OUTPUT TO FD 3
 5   cat <&3 > /tmp/ttyDump.dat &          #REDIRECT SERIAL OUTPUT TO FILE
 6   PID=$!                                #SAVE PID TO KILL CAT
 7     echo "R" > /dev/ttyUSB0             #SEND COMMAND STRING TO SERIAL PORT
 8     sleep 0.2s                          #WAIT FOR RESPONSE
 9   kill $PID                             #KILL CAT PROCESS
10   wait $PID 2>/dev/null                 #SUPRESS "Terminated" output
11 
12 exec 3<&-                               #FREE FD 3
13 cat /tmp/ttyDump.dat                    #DUMP CAPTURED DATA
1 #!/bin/sh
2 
3 exec 99<>/dev/ttyUSB0
4 printf "QPI\r" >&99
5 while read -t 3 line <&99;do echo $line;done

 

 

写一个linux的串口程序,发现大多数情况下数据接收没问题,但是有时却有问题。主要是接收的字符串中包含有0x03这个字符,会造成与它相邻的字符同时也接收不到,搞了好久才发现这个错误。查找资料后发现许多ARM板也存着这个问题,存在问题的字符串还包括0x13、0x0D等特殊含义的字符。

解决方法比较简单,在接收数据前,对串口的文件描述符fd进行如下设置, 

struct termios options;
    if  ( tcgetattr( fd,&options)  !=  0)
    {
        perror("SetupSerial 1");
        return(FALSE);
    }
    options.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON);
    options.c_oflag &= ~OPOST;
    options.c_cflag |= CLOCAL | CREAD;
    options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
    tcsetattr(fd,TCSAFLUSH,&options);
代码用于修改与文件描述符fd相关的标志.c_oflag和.c_oflag和.c_iflag,重置了一些特殊字符的处理方式。现在通过fd的串口接收任何字符都应该不成问题了。

现在问题应该可以解决了。如果你还想了解的更深入的话,可以接着往下看看。

一、数据成员

termios 函数族提供了一个常规的终端接口,用于控制非同步通信端口。 这个结构包含了至少下列成员:

 1 tcflag_t c_iflag; /* 输入模式 */
 2 tcflag_t c_oflag; /* 输出模式 */
 3 tcflag_t c_cflag; /* 控制模式 */
 4 tcflag_t c_lflag; /* 本地模式 */
 5 cc_t c_cc[NCCS]; /* 控制字符 */
 6 
 7 struct termios
 8 {unsigned short c_iflag; /* 输入模式标志*/
 9 unsigned short c_oflag; /* 输出模式标志*/
10 unsigned short c_cflag; /* 控制模式标志*/
11 unsigned short c_lflag; /*区域模式标志或本地模式标志或局部模式*/
12 unsigned char c_line; /*行控制line discipline */
13 unsigned char c_cc[NCC]; /* 控制字符特性*/
14 };

二、作用

这个变量被用来提供一个健全的线路设置集合, 如果这个端口在被用户初始化前使用. 驱动初始化这个变量使用一个标准的数值集, 它拷贝自 tty_std_termios 变量. tty_std_termos 在 tty 核心被定义为:

1 struct termios tty_std_termios = {
2     .c_iflag = ICRNL | IXON,
3     .c_oflag = OPOST | ONLCR,
4     .c_cflag = B38400 | CS8 | CREAD | HUPCL,
5     .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |ECHOCTL | ECHOKE | IEXTEN,
7     .c_cc = INIT_C_CC
8 };

这个 struct termios 结构用来持有所有的当前线路设置, 给这个 tty 设备的一个特定端口. 这些线路设置控制当前波特率, 数据大小, 数据流控设置, 以及许多其他值.

三、成员的值

(一)c_iflag 标志常量:

Input mode ( 输入模式)

input mode可以在输入值传给程序之前控制其处理的方式。其中输入值可能是由序列埠或键盘的终端驱动程序所接收到的字元。 我们可以利用termios结构的c_iflag的标志来加以控制,其定义的方式皆以OR来加以组合。

IGNBRK :忽略输入中的 BREAK 状态。 (忽略命令行中的中断)
BRKINT :(命令行出现中断时,可产生一插断)如果设置了 IGNBRK,将忽略 BREAK。如果没有设置,但是设置了 BRKINT,那么 BREAK 将使得输入和输出队列被刷新,如果终端是一个前台进程组的控制终端,这个进程组中所有进程将收到 SIGINT 信号。如果既未设置 IGNBRK 也未设置 BRKINT,BREAK 将视为与 NUL 字符同义,除非设置了 PARMRK,这种情况下它被视为序列 377。
IGNPAR :忽略桢错误和奇偶校验错。
PARMRK :如果没有设置 IGNPAR,在有奇偶校验错或桢错误的字符前插入 377 。如果既没有设置 IGNPAR 也没有设置 PARMRK,将有奇偶校验错或桢错误的字符视为。
INPCK :启用输入奇偶检测。
ISTRIP :去掉第八位。
INLCR :将输入中的 NL 翻译为 CR。(将收到的换行符号转换为Return)
IGNCR :忽略输入中的回车。
ICRNL :将输入中的回车翻译为新行 (除非设置了 IGNCR)(否则当输入信号有 CR 时不会终止输入)。
IUCLC :(不属于 POSIX) 将输入中的大写字母映射为小写字母。
IXON :启用输出的 XON/XOFF 流控制。
IXANY :(不属于 POSIX.1;XSI) 允许任何字符来重新开始输出。(?)
IXOFF :启用输入的 XON/XOFF 流控制。
IMAXBEL:(不属于 POSIX) 当输入队列满时响零。Linux 没有实现这一位,总是将它视为已设置。


(二) c_oflag 标志常量:Output mode ( 输出模式)

Output mode主要负责控制输出字元的处理方式。输出字元在传送到序列埠或显示器之前是如何被程序来处理。

输出模式是利用termios结构的c_oflag的标志来加以控制,其定义的方式皆以OR来加以组合。


OPOST :启用具体实现自行定义的输出处理。
OLCUC :(不属于 POSIX) 将输出中的小写字母映射为大写字母。
ONLCR :(XSI) 将输出中的新行符映射为回车-换行。
OCRNL :将输出中的回车映射为新行符
ONOCR :不在第 0 列输出回车。
ONLRET :不输出回车。
OFILL :发送填充字符作为延时,而不是使用定时来延时。
OFDEL :(不属于 POSIX) 填充字符是 ASCII DEL (0177)。如果不设置,填充字符则是 ASCII NUL。
NLDLY :新行延时掩码。取值为 NL0 和 NL1。
CRDLY :回车延时掩码。取值为 CR0, CR1, CR2, 或 CR3。
TABDLY :水平跳格延时掩码。取值为 TAB0, TAB1, TAB2, TAB3 (或 XTABS)。取值为 TAB3,即 XTABS,将扩展跳格为空格 (每个跳格符填充 8 个空格)。(?)
BSDLY :回退延时掩码。取值为 BS0 或 BS1。(从来没有被实现过)
VTDLY :竖直跳格延时掩码。取值为 VT0 或 VT1。
FFDLY :进表延时掩码。取值为 FF0 或 FF1。
(三)c_cflag 标志常量:Control mode ( 控制模式)

Control mode主要用于控制终端设备的硬件设置。利用termios结构的c_cflag的标志来加以控制。控制模式用在序列线连接到数据设备,也可以用在与终端设备的交谈。

一般来说,改变终端设备的组态要比使用termios的控制模式来改变行(lines)的行为来得容易。


CBAUD :(不属于 POSIX) 波特率掩码 (4+1 位)。
CBAUDEX :(不属于 POSIX) 扩展的波特率掩码 (1 位),包含在 CBAUD 中。
(POSIX 规定波特率存储在 termios 结构中,并未精确指定它的位置,而是提供了函数 cfgetispeed() 和 cfsetispeed() 来存取它。一些系统使用 c_cflag 中 CBAUD 选择的位,其他系统使用单独的变量,例如 sg_ispeed 和 sg_ospeed 。)
CSIZE:字符长度掩码(传送或接收字元时用的位数)。取值为 CS5(传送或接收字元时用5bits), CS6, CS7, 或 CS8。
CSTOPB :设置两个停止位,而不是一个。
CREAD :打开接受者。
PARENB :允许输出产生奇偶信息以及输入的奇偶校验(启用同位产生与侦测)。
PARODD :输入和输出是奇校验(使用奇同位而非偶同位)。
HUPCL :在最后一个进程关闭设备后,降低 modem 控制线 (挂断)。(?)
CLOCAL :忽略 modem 控制线。
LOBLK :(不属于 POSIX) 从非当前 shell 层阻塞输出(用于 shl )。(?)
CIBAUD :(不属于 POSIX) 输入速度的掩码。CIBAUD 各位的值与 CBAUD 各位相同,左移了 IBSHIFT 位。
CRTSCTS :(不属于 POSIX) 启用 RTS/CTS (硬件) 流控制。

(四)c_lflag 标志常量:Local mode ( 局部模式)
Local mode主要用来控制终端设备不同的特色。利用termios结构里的c_lflag的标志来设定局部模式。
在巨集中有两个比较重要的标志:
1.ECHO:它可以让你阻止键入字元的回应。
2.ICANON(正规模式)标志,它可以对所接收的字元在两种不同的终端设备模式之间来回切换。
ISIG:当接受到字符 INTR, QUIT, SUSP, 或 DSUSP 时,产生相应的信号。
ICANON:启用标准模式 (canonical mode)。允许使用特殊字符 EOF, EOL, EOL2, ERASE, KILL, LNEXT, REPRINT, STATUS, 和 WERASE,以及按行的缓冲。
XCASE:(不属于 POSIX; Linux 下不被支持) 如果同时设置了 ICANON,终端只有大写。输入被转换为小写,除了有前缀的字符。输出时,大写字符被前缀(某些系统指定的特定字符) ,小写字符被转换成大写。
ECHO :回显输入字符。
ECHOE :如果同时设置了 ICANON,字符 ERASE 擦除前一个输入字符,WERASE 擦除前一个词。
ECHOK :如果同时设置了 ICANON,字符 KILL 删除当前行。
ECHONL :如果同时设置了 ICANON,回显字符 NL,即使没有设置 ECHO。
ECHOCTL :(不属于 POSIX) 如果同时设置了 ECHO,除了 TAB, NL, START, 和 STOP 之外的 ASCII 控制信号被回显为 ^X, 这里 X 是比控制信号大 0x40 的 ASCII 码。例如,字符 0x08 (BS) 被回显为 ^H。
ECHOPRT :(不属于 POSIX) 如果同时设置了 ICANON 和 IECHO,字符在删除的同时被打印。
ECHOKE :(不属于 POSIX) 如果同时设置了 ICANON,回显 KILL 时将删除一行中的每个字符,如同指定了 ECHOE 和 ECHOPRT 一样。
DEFECHO :(不属于 POSIX) 只在一个进程读的时候回显。
FLUSHO :(不属于 POSIX; Linux 下不被支持) 输出被刷新。这个标志可以通过键入字符 DISCARD 来开关。
NOFLSH :禁止在产生 SIGINT, SIGQUIT 和 SIGSUSP 信号时刷新输入和输出队列,即关闭queue中的flush。
TOSTOP :向试图写控制终端的后台进程组发送 SIGTTOU 信号(传送欲写入的信息到后台处理)。
PENDIN :(不属于 POSIX; Linux 下不被支持) 在读入下一个字符时,输入队列中所有字符被重新输出。(bash 用它来处理 typeahead)
IEXTEN :启用实现自定义的输入处理。这个标志必须与 ICANON 同时使用,才能解释特殊字符 EOL2,LNEXT,REPRINT 和 WERASE,IUCLC 标志才有效。
(五)c_cc 数组:特殊控制字元

可提供使用者设定一些特殊的功能, 如Ctrl+C的字元组合。特殊控制字元主要是利用termios结构里c_cc的阵列成员来做设定。
c_cc阵列主要用于正规与非正规两种环境,但要注意的是正规与非正规不可混为一谈。
其定义了特殊的控制字符。符号下标 (初始值) 和意义为:

VINTR:(003, ETX, Ctrl-C, or also 0177, DEL, rubout) 中断字符。发出 SIGINT 信号。当设置 ISIG 时可被识别,不再作为输入传递。
VQUIT :(034, FS, Ctrl-) 退出字符。发出 SIGQUIT 信号。当设置 ISIG 时可被识别,不再作为输入传递。
VERASE :(0177, DEL, rubout, or 010, BS, Ctrl-H, or also #) 删除字符。删除上一个还没有删掉的字符,但不删除上一个 EOF 或行首。当设置 ICANON 时可被识别,不再作为输入传递。
VKILL :(025, NAK, Ctrl-U, or Ctrl-X, or also @) 终止字符。删除自上一个 EOF 或行首以来的输入。当设置 ICANON 时可被识别,不再作为输入传递。
VEOF :(004, EOT, Ctrl-D) 文件尾字符。更精确地说,这个字符使得 tty 缓冲中的内容被送到等待输入的用户程序中,而不必等到 EOL。如果它是一行的第一个字符,那么用户程序的 read() 将返回 0,指示读到了 EOF。当设置 ICANON 时可被识别,不再作为输入传递。
VMIN :非 canonical 模式读的最小字符数(MIN主要是表示能满足read的最小字元数)。
VEOL :(0, NUL) 附加的行尾字符。当设置 ICANON 时可被识别。
VTIME :非 canonical 模式读时的延时,以十分之一秒为单位。
VEOL2 :(not in POSIX; 0, NUL) 另一个行尾字符。当设置 ICANON 时可被识别。
VSWTCH :(not in POSIX; not supported under Linux; 0, NUL) 开关字符。(只为 shl 所用。)
VSTART :(021, DC1, Ctrl-Q) 开始字符。重新开始被 Stop 字符中止的输出。当设置 IXON 时可被识别,不再作为输入传递。
VSTOP :(023, DC3, Ctrl-S) 停止字符。停止输出,直到键入 Start 字符。当设置 IXON 时可被识别,不再作为输入传递。
VSUSP :(032, SUB, Ctrl-Z) 挂起字符。发送 SIGTSTP 信号。当设置 ISIG 时可被识别,不再作为输入传递。
VDSUSP :(not in POSIX; not supported under Linux; 031, EM, Ctrl-Y) 延时挂起信号。当用户程序读到这个字符时,发送 SIGTSTP 信号。当设置 IEXTEN 和 ISIG,并且系统支持作业管理时可被识别,不再作为输入传递。
VLNEXT :(not in POSIX; 026, SYN, Ctrl-V) 字面上的下一个。引用下一个输入字符,取消它的任何特殊含义。当设置 IEXTEN 时可被识别,不再作为输入传递。
VWERASE :(not in POSIX; 027, ETB, Ctrl-W) 删除词。当设置 ICANON 和 IEXTEN 时可被识别,不再作为输入传递。
VREPRINT :(not in POSIX; 022, DC2, Ctrl-R) 重新输出未读的字符。当设置 ICANON 和 IEXTEN 时可被识别,不再作为输入传递。
VDISCARD :(not in POSIX; not supported under Linux; 017, SI, Ctrl-O) 开关:开始/结束丢弃未完成的输出。当设置 IEXTEN 时可被识别,不再作为输入传递。
VSTATUS :(not in POSIX; not supported under Linux; status request: 024, DC4, Ctrl-T).
这些符号下标值是互不相同的,除了 VTIME,VMIN 的值可能分别与 VEOL,VEOF 相同。 (在 non-canonical 模式下,特殊字符的含义更改为延时含义。MIN 表示应当被读入的最小字符数。TIME 是以十分之一秒为单位的计时器。如果同时设置了它们,read 将等待直到至少读入一个字符,一旦读入 MIN 个字符或者从上次读入字符开始经过了 TIME 时间就立即返回。如果只设置了 MIN,read 在读入 MIN 个字符之前不会返回。如果只设置了 TIME,read 将在至少读入一个字符,或者计时器超时的时候立即返回。如果都没有设置,read 将立即返回,只给出当前准备好的字符。)
MIN与TIME组合有以下四种:

1、 MIN = 0 , TIME =0
有READ立即回传
否则传回 0 ,不读取任何字元
2、 MIN = 0 , TIME >0
READ 传回读到的字元,或在十分之一秒后传回TIME
若来不及读到任何字元,则传回0
3、 MIN > 0 , TIME =0
READ 会等待,直到MIN字元可读
4、 MIN > 0 , TIME > 0
每一格字元之间计时器即会被启动
READ 会在读到MIN字元,传回值或TIME的字元计时(1/10秒)超过时将值传回
四、与此结构体相关的函数
(一)tcgetattr()
1.原型
int tcgetattr(int fd,struct termois & termios_p);
2.功能
取得终端介质(fd)初始值,并把其值 赋给temios_p;函数可以从后台进程中调用;但是,终端属性可能被后来的前台进程所改变。


(二)tcsetattr()
1.原型
int tcsetattr(int fd,int actions,const struct termios *termios_p);
2.功能
设置与终端相关的参数 (除非需要底层支持却无法满足),使用 termios_p 引用的 termios 结构。optional_actions (tcsetattr函数的第二个参数)指定了什么时候改变会起作用:
TCSANOW:改变立即发生
TCSADRAIN:改变在所有写入 fd 的输出都被传输后生效。这个函数应当用于修改影响输出的参数时使用。(当前输出完成时将值改变)
TCSAFLUSH :改变在所有写入 fd 引用的对象的输出都被传输后生效,所有已接受但未读入的输入都在改变发生前丢弃(同TCSADRAIN,但会舍弃当前所有值)。
(三)tcsendbreak()
传送连续的 0 值比特流,持续一段时间,如果终端使用异步串行数据传输的话。如果 duration 是 0,它至少传输 0.25 秒,不会超过 0.5 秒。如果 duration 非零,它发送的时间长度由实现定义。
如果终端并非使用异步串行数据传输,tcsendbreak() 什么都不做。
(四)tcdrain()
等待直到所有写入 fd 引用的对象的输出都被传输。
(五)tcflush()
丢弃要写入 引用的对象,但是尚未传输的数据,或者收到但是尚未读取的数据,取决于 queue_selector 的值:

TCIFLUSH :刷新收到的数据但是不读
TCOFLUSH :刷新写入的数据但是不传送
TCIOFLUSH :同时刷新收到的数据但是不读,并且刷新写入的数据但是不传送
(六)tcflow()
挂起 fd 引用的对象上的数据传输或接收,取决于 action 的值:

TCOOFF :挂起输出
TCOON :重新开始被挂起的输出
TCIOFF :发送一个 STOP 字符,停止终端设备向系统传送数据
TCION :发送一个 START 字符,使终端设备向系统传输数据
打开一个终端设备时的默认设置是输入和输出都没有挂起。


(七)波特率函数
被用来获取和设置 termios 结构中,输入和输出波特率的值。新值不会马上生效,直到成功调用了 tcsetattr() 函数。
设置速度为 B0 使得 modem "挂机"。与 B38400 相应的实际比特率可以用 setserial(8) 调整。
输入和输出波特率被保存于 termios 结构中。
cfmakeraw 设置终端属性如下:
termios_p->c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
termios_p->c_oflag &= ~OPOST;
termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
termios_p->c_cflag &= ~(CSIZE|PARENB);
termios_p->c_cflag |= CS8;

1.cfgetospeed() 返回 termios_p 指向的 termios 结构中存储的输出波特率
2.cfsetospeed() 设置 termios_p 指向的 termios 结构中存储的输出波特率为 speed。取值必须是以下常量之一:
B0 B50 B75 B110 B134 B150 B200 B300 B600 B1200 B1800 B2400 B4800 B9600 B19200 B38400 B57600 B115200 B230400
其中:零值 B0 用来中断连接。如果指定了 B0,不应当再假定存在连接。通常,这样将断开连接。CBAUDEX 是一个掩码,指示高于 POSIX.1 定义的速度的那一些 (57600 及以上)。因此,B57600 & CBAUDEX 为非零。
3.cfgetispeed() 返回 termios 结构中存储的输入波特率。
4.cfsetispeed() 设置 termios 结构中存储的输入波特率为 speed。如果输入波特率被设为0,实际输入波特率将等于输出波特率。
五、RETURN VALUE 返回值
1.cfgetispeed() 返回 termios 结构中存储的输入波特率。
2.cfgetospeed() 返回 termios 结构中存储的输出波特率。
3.其他函数返回:
(1)0:成功
(2)-1:失败,
并且为 errno 置值来指示错误。
注意 tcsetattr() 返回成功,如果任何所要求的修改可以实现的话。因此,当进行多重修改时,应当在这个函数之后再次调用 tcgetattr() 来检测是否所有修改都成功实现。
六、NOTES 注意
Unix V7 以及很多后来的系统有一个波特率的列表,在十四个值 B0, ..., B9600 之后可以看到两个常数 EXTA, EXTB ("External A" and "External B")。很多系统将这个列表扩展为更高的波特率。
tcsendbreak 中非零的 duration 有不同的效果。SunOS 指定中断 duration*N 秒,其中 N 至少为 0.25,不高于 0.5 。Linux, AIX, DU, Tru64 发送 duration 微秒的 break 。FreeBSD, NetBSD, HP-UX 以及 MacOS 忽略 duration 的值。在 Solaris 和 Unixware 中, tcsendbreak 搭配非零的 duration 效果类似于 tcdrain。
SEE ALSO 参见

stty(1), setserial(8)
————————————————
版权声明:本文为CSDN博主「tiny丶」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/vevenlcf/article/details/51096122

 

 

 

 

属性获取

 

函数:int tcgetattr(int fd, struct termios *termios_p);
成功返回零;失败返回非零,发生失败接口将设置errno错误标识。

 

参数说明:

 

tcgetattr函数用于获取与终端相关的参数。参数fd为终端的文件描述符,返回的结果保存在termios 结构体中,该结构体一般包括如下的成员:
tcflag_t c_iflag;
tcflag_t c_oflag;
tcflag_t c_cflag;
tcflag_t c_lflag;
cc_t c_cc[NCCS];
其具体意义如下。
c_iflag:输入模式标志,控制终端输入方式,具体参数如表1所示。
表1 c_iflag参数表
键 值
说 明
IGNBRK
忽略BREAK键输入
BRKINT
如果设置了IGNBRK,BREAK键输入将被忽略
IGNPAR
忽略奇偶校验错误
PARMRK
标识奇偶校验错误
INPCK
允许输入奇偶校验
ISTRIP
去除字符的第8个比特
INLCR
将输入的NL(换行)转换成CR(回车)
IGNCR
忽略输入的回车
ICRNL
将输入的回车转化成换行(如果IGNCR未设置的情况下)
IUCLC
将输入的大写字符转换成小写字符(非POSIX)
IXON
允许输出时对XON/XOFF流进行控制
IXANY
输入任何字符将重启停止的输出
IXOFF
允许输入时对XON/XOFF流进行控制
IMAXBEL
当输入队列满的时候开始响铃
c_oflag:输出模式标志,控制终端输出方式,具体参数如表2所示。
表2 c_oflag参数
键 值
说 明
OPOST
处理后输出
OLCUC
将输入的小写字符转换成大写字符(非POSIX)
ONLCR
将输入的NL(换行)转换成CR(回车)及NL(换行)
OCRNL
将输入的CR(回车)转换成NL(换行)
ONOCR
第一行不输出回车符
ONLRET
不输出回车符
OFILL
发送填充字符以延迟终端输出
OFDEL
以ASCII码的DEL作为填充字符,如果未设置该参数,填充字符为NUL
NLDLY
换行输出延时,可以取NL0(不延迟)或NL1(延迟0.1s)
CRDLY
回车延迟,取值范围为:CR0、CR1、CR2和 CR3
TABDLY
水平制表符输出延迟,取值范围为:TAB0、TAB1、TAB2和TAB3
BSDLY
空格输出延迟,可以取BS0或BS1
VTDLY
垂直制表符输出延迟,可以取VT0或VT1
FFDLY
换页延迟,可以取FF0或FF1
c_cflag:控制模式标志,指定终端硬件控制信息,具体参数如表3所示。
表3 c_cflag参数
键 值
说 明
CBAUD
波特率(4+1位)(非POSIX)
CBAUDEX
附加波特率(1位)(非POSIX)
CSIZE
字符长度,取值范围为CS5、CS6、CS7或CS8
CSTOPB
设置两个停止位
CREAD
使用接收器
PARENB
使用奇偶校验
PARODD
对输入使用奇偶校验,对输出使用偶校验
HUPCL
关闭设备时挂起
CLOCAL
忽略调制解调器线路状态
CRTSCTS
使用RTS/CTS流控制
c_lflag:本地模式标志,控制终端编辑功能,具体参数如表4所示。
表4 c_lflag参数
键 值
说 明
ISIG
当输入INTR、QUIT、SUSP或DSUSP时,产生相应的信号
ICANON
使用标准输入模式
XCASE
在ICANON和XCASE同时设置的情况下,终端只使用大写。
ECHO
显示输入字符
ECHOE
如果ICANON同时设置,ERASE将删除输入的字符
ECHOK
如果ICANON同时设置,KILL将删除当前行
ECHONL
如果ICANON同时设置,即使ECHO没有设置依然显示换行符
ECHOPRT
如果ECHO和ICANON同时设置,将删除打印出的字符(非POSIX)
TOSTOP
向后台输出发送SIGTTOU信号
c_cc[NCCS]:控制字符,用于保存终端驱动程序中的特殊字符,如输入结束符等。c_cc中定义了如表5所示的控制字符。
表5 c_cc支持的控制字符
说 明
说 明
VINTR
Interrupt字符
VEOL
附加的End-of-file字符
VQUIT
Quit字符
VTIME
非规范模式读取时的超时时间
VERASE
Erase字符
VSTOP
Stop字符
VKILL
Kill字符
VSTART
Start字符
VEOF
End-of-file字符
VSUSP
Suspend字符
VMIN
非规范模式读取时的最小字符数
   
tcsetattr函数用于设置终端的相关参数。参数fd为打开的终端文件描述符,参数optional_actions用于控制修改起作用的时间,而结构体termios_p中保存了要修改的参数。
optional_actions可以取如下的值:
TCSANOW:不等数据传输完毕就立即改变属性。
TCSADRAIN:等待所有数据传输结束才改变属性。
TCSAFLUSH:清空输入输出缓冲区才改变属性。
错误信息:
EBADF:非法的文件描述符。
EINTR:tcsetattr函数调用被信号中断。
EINVAL:参数optional_actions使用了非法值,或参数termios中使用了非法值。
ENCTTY:非终端的文件描述符。

属性设置

函数:int tcsetattr(int fd, int optional_actions, const struct termios *termios_p);

 

tcsetattr函数用于设置终端参数。函数在成功的时候返回0,失败的时候返回-1,并设置errno的值。

参数说明:

参数fd为打开的终端文件描述符,参数optional_actions用于控制修改起作用的时间,而结构体termios_p中保存了要修改的参数。optional_actions可以取如下的值。

 

TCSANOW:不等数据传输完毕就立即改变属性。
TCSADRAIN:等待所有数据传输结束才改变属性。
TCSAFLUSH:清空输入输出缓冲区才改变属性。
EBADF:非法的文件描述符
EINTR:tcsetattr函数调用被信号中断。
EINVAL:参数optional_actions使用了非法值,或参数termios中使用了非法值。
ENCTTY:非终端文件描述符

 

示例

 

#include <stdio.h>
#include <termios.h>
#include <unistd.h>
#include <errno.h>
int main(void){
//term用于存储获得的终端参数信息
struct termios term;
int err;
//获得标准输入的终端参数,将获得的信息保存在term变量中
if(tcgetattr(STDIN_FILENO,&term)==-1){
perror("Cannot get standard input description");
return 1;
}
//修改获得的终端信息的结束控制字符
term.c_cc[VEOF]=(cc_t)0x07;
//使用tcsetattr函数将修改后的终端参数设置到标准输入中
//err用于保存函数调用后的结果
err=tcsetattr(STDIN_FILENO,TCSAFLUSH,&term);
//如果err为-1或是出现EINTR错误(函数执行被信号中断),
//给出相关出错信息
if(err==-1 && err==EINTR){
perror("Failed to change EOF character");
return 1;
}
return 0;
}
用gcc编译程序,得到可执行程序。在执行程序前,按“Ctrl+D”可以使终端结束。执行程序后,按“Ctrl+D”失去了作用,而输入“Ctrl+G”实现了原来“Ctrl+D”的功能。
 
 
 
 

INUX 使用tcgetattr与tcsetattr函数控制终端

 转载

Liuqz20092023-01-05 12:42:53

文章标签串口ios#include文章分类虚拟化云计算阅读数372

 

为了便于通过程序来获得和修改终端参数,Linux还提供了tcgetattr函数和tcsetattr函数。tcgetattr用于获取终端的相关参数,而tcsetattr函数用于设置终端参数。这两个函数的具体信息如表6.2所示。

表6.2 tcgetattr函数和tcsetattr函数

头文件

 

函数形式

int tcgetattr(int fd, struct termios *termios_p);

int tcsetattr(int fd, int optional_actions, const struct termios *termios_p);

返回值

成功

失败

是否设置errno

0

−1

说明:tcgetattr函数用于获取与终端相关的参数。参数fd为终端的文件描述符,返回的结果保存在termios结构体中,该结构体一般包括如下的成员:

tcflag_t c_iflag;
tcflag_t c_oflag;
tcflag_t c_cflag;
tcflag_t c_lflag;
cc_t c_cc[NCCS];
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.

 

 

其具体意义如下。

 
c_iflag:输入模式标志,控制终端输入方式,具体参数如表6.3所示。

表6.3 c_iflag参数表

键    值

说    明

IGNBRK

忽略BREAK键输入

BRKINT

如果设置了IGNBRK,BREAK键的输入将被忽略,如果设置了BRKINT ,将产生SIGINT中断

IGNPAR

忽略奇偶校验错误

PARMRK

标识奇偶校验错误

INPCK

允许输入奇偶校验

ISTRIP

去除字符的第8个比特

INLCR

将输入的NL(换行)转换成CR(回车)

IGNCR

忽略输入的回车

ICRNL

将输入的回车转化成换行(如果IGNCR未设置的情况下)

IUCLC

将输入的大写字符转换成小写字符(非POSIX)

IXON

允许输入时对XON/XOFF流进行控制

IXANY

输入任何字符将重启停止的输出

IXOFF

允许输入时对XON/XOFF流进行控制

IMAXBEL

当输入队列满的时候开始响铃,Linux在使用该参数而是认为该参数总是已经设置

c_oflag:输出模式标志,控制终端输出方式,具体参数如表6.4所示。

表6.4 c_oflag参数

键    值

说    明

OPOST

处理后输出

OLCUC

将输入的小写字符转换成大写字符(非POSIX)

ONLCR

将输入的NL(换行)转换成CR(回车)及NL(换行)

OCRNL

将输入的CR(回车)转换成NL(换行)

ONOCR

第一行不输出回车符

ONLRET

不输出回车符

OFILL

发送填充字符以延迟终端输出

OFDEL

以ASCII码的DEL作为填充字符,如果未设置该参数,填充字符将是NUL(‘\0’)(非POSIX)

NLDLY

换行输出延时,可以取NL0(不延迟)或NL1(延迟0.1s)

CRDLY

回车延迟,取值范围为:CR0、CR1、CR2和 CR3

TABDLY

水平制表符输出延迟,取值范围为:TAB0、TAB1、TAB2和TAB3

BSDLY

空格输出延迟,可以取BS0或BS1

VTDLY

垂直制表符输出延迟,可以取VT0或VT1

FFDLY

换页延迟,可以取FF0或FF1

c_cflag:控制模式标志,指定终端硬件控制信息,具体参数如表6.5所示。

 

 

LINUX 使用tcgetattr函数与tcsetattr函数控制终端二

 

2009-11-24 15:30

 

 

 

 

表6.5 c_oflag参数

c_lflag:本地模式标志,控制终端编辑功能,具体参数如表6.6所示。

 

 

表6.6 c_lflag参数

c_cc[NCCS]:控制字符,用于保存终端驱动程序中的特殊字符,如输入结束符等。c_cc中定义了如表6.7所示的控制字符。

 

 

 

表6.7 c_cc支持的控制字符

tcsetattr函数用于设置终端的相关参数。参数fd为打开的终端文件描述符,参数optional_actions用于控制修改起作用的时间,而结构体termios_p中保存了要修改的参数。
optional_actions可以取如下的值。
 
TCSANOW:不等数据传输完毕就立即改变属性。
TCSADRAIN:等待所有数据传输结束才改变属性。
TCSAFLUSH:清空输入输出缓冲区才改变属性。

错误信息:
EBADF:非法的文件描述符。
EINTR:tcsetattr函数调用被信号中断。
EINVAL:参数optional_actions使用了非法值,或参数termios中使用了非法值。
ENCTTY:非终端的文件描述符。

 

 

 

实例演练:
程序p6.2.c通过修改终端控制字符,将终端输入结束符由“Ctrl+D”,修改成了“Ctrl+G”。首先,程序调用tcgetattr函数获得标准 输入的termios信息,将termios结构体中的c_cc[VEOF]控制字符的修改成0x07(即Ctrl+G);然后,使用tcsetattr 函数将修改后的termios参数设置到终端中。具体代码如下所示:

//p6.2.c 修改终端控制字符示例
#include
#include
#include
#include

int main(void){
//term用于存储获得的终端参数信息
struct termios term;
int err;

//获得标准输入的终端参数,将获得的信息保存在term变量中
if(tcgetattr(STDIN_FILENO,&term)==-1){
perror("Cannot get standard input description");
return 1;
}

//修改获得的终端信息的结束控制字符
term.c_cc[VEOF]=(cc_t)0x07;

//使用tcsetattr函数将修改后的终端参数设置到标准输入中
//err用于保存函数调用后的结果
err=tcsetattr(STDIN_FILENO,TCSAFLUSH,&term);

//如果err为-1或是出现EINTR错误(函数执行被信号中断),
//给出相关出错信息
if(err==-1 && err==EINTR){
perror("Failed to change EOF character");
return 1;
}

return 0;
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.

 

 

使用gcc编译p6.2.c程序,得到名为p6.2的可执行程序。在执行p6.2程序前,按“Ctrl+D”可以使终端结束。执行p6.2程序后,按“Ctrl+D”失去了作用,而输入“Ctrl+G”实现了原来“Ctrl+D”的功能

 

 

 

 

 

键    值

说    明

CBAUD

波特率(4+1位)(非POSIX)

CBAUDEX

附加波特率(1位)(非POSIX)

CSIZE

字符长度,取值范围为CS5、CS6、CS7或CS8

CSTOPB

设置两个停止位

CREAD

使用接收器

PARENB

使用奇偶校验

PARODD

对输入使用奇偶校验,对输出使用偶校验

HUPCL

关闭设备时挂起

CLOCAL

忽略调制解调器线路状态

CRTSCTS

使用RTS/CTS流控制

======

串口操作需要的头文件

#include /*标准输入输出定义*/

#include /*标准函数库定义*/

#include /*Unix 标准函数定义*/

#include

#include

#include /*文件控制定义*/

#include /*PPSIX 终端控制定义*/

#include /*错误号定义*/
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.

 

 

 

1.打开串口

在前面已经提到linux下的串口访问是以设备文件形式进行的,所以打开串口也即是打开文件的操作。函数原型可以如下所示:

int open(“DE_name”,int open_Status)
  • 1.

 

参数说明:

(1)DE_name:要打开的设备文件名

比如要打开串口1,即为/dev/ttyS0。

(2)open_Status:文件打开方式,可采用下面的文件打开模式:

  O_RDONLY:以只读方式打开文件

  O_WRONLY:以只写方式打开文件

O_RDWR:以读写方式打开文件

O_APPEND:写入数据时添加到文件末尾

O_CREATE:如果文件不存在则产生该文件,使用该标志需要设置访问权限位mode_t

O_EXCL:指定该标志,并且指定了O_CREATE标志,如果打开的文件存在则会产生一个错误

O_TRUNC:如果文件存在并且成功以写或者只写方式打开,则清除文件所有内容,使得文件长度变为0

O_NOCTTY:如果打开的是一个终端设备,这个程序不会成为对应这个端口的控制终端,如果没有该标志,任何一个输入,例如键盘中止信号等,都将影响进程。

O_NONBLOCK:该标志与早期使用的O_NDELAY标志作用差不多。程序不关心DCD信号线的状态,如果指定该标志,进程将一直在休眠状态,直到DCD信号线为0。

函数返回值:

成功返回文件描述符,如果失败返回-1

例如:

在 Linux 下串口文件是位于 /dev 下的。串口一 为 /dev/ttyS0,串口二 为 /dev/ttyS1。打开串口是通过使用标准的文件打开函数操作:

int fd;

/*以读写方式打开串口*/

fd = open( "/dev/ttyS0", O_RDWR);

if (fd==-1)

{

/* 不能打开串口一*/

perror(" 提示错误!");

}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.

 

 

2.设置串口

最基本的设置串口包括波特率设置,效验位和停止位设置。串口的设置主要是设置

 struct termios 结构体的各成员值。

struct termio

{ unsigned short c_iflag; /* 输入模式标志 */

unsigned short c_oflag; /* 输出模式标志 */

unsigned short c_cflag; /* 控制模式标志*/

unsigned short c_lflag; /* local mode flags */

unsigned char c_line; /* line discipline */

unsigned char c_cc[NCC]; /* control characters */

};
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.

 

 

设置这个结构体很复杂,我这里就只说说常见的一些设置:

2.1 波特率设置

波特率的设置定义在,其包含在头文件里。

常用的波特率常数如下:

B0-------à0                     B1800-------à1800

B50-----à50                    B2400------à2400

B75-----à75                    B4800------à4800

B110----à110                 B9600------à9600

B134----à134.5              B19200-----à19200

B200----à200                 B38400------à38400

B300----à300                 B57600------à57600

B600----à600                 B76800------à76800

B1200---à1200              B115200-----à115200

假定程序中想要设置通讯的波特率,使用cfsetispeed( )和cfsetospeed( )函数来操作,获取波特率信息是通过cfgetispeed()和cfgetospeed()函数来完成的。

比如可以这样来指定串口通讯的波特率:

#include //头文件定义

........

.......

struct termios opt; /*定义指向termios 结构类型的指针opt*/



/***************以下设置通讯波特率****************/

cfsetispeed(&opt,B9600 ); /*指定输入波特率,9600bps*/

cfsetospeed(&opt,B9600);/*指定输出波特率,9600bps*/

/************************************************/

.........

..........
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.

 

 

一般来说,输入、输出的波特率应该是一致的。

下面是另一个修改波特率的代码:

struct termios Opt;

tcgetattr(fd, &Opt);

cfsetispeed(&Opt,B19200); /*设置为19200Bps*/

cfsetospeed(&Opt,B19200);

tcsetattr(fd,TCANOW,&Opt);
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.

 

 

设置波特率的例子函数:

/**

*@brief 设置串口通信速率

*@param fd 类型 int 打开串口的文件句柄

*@param speed 类型 int 串口速度

*@return void

*/

int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300,

B38400, B19200, B9600, B4800, B2400, B1200, B300, };

int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400,

19200, 9600, 4800, 2400, 1200, 300, };

void set_speed(int fd, int speed){

int i;

int status;

struct termios Opt;

tcgetattr(fd, &Opt);

for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++) {

if (speed == name_arr[i]) {

tcflush(fd, TCIOFLUSH);

cfsetispeed(&Opt, speed_arr[i]);

cfsetospeed(&Opt, speed_arr[i]);

status = tcsetattr(fd1, TCSANOW, &Opt);

if (status != 0) {

perror("tcsetattr fd1");

return;

}

tcflush(fd,TCIOFLUSH);

}

}

}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.

 

 

2.2 设置效验的函数:

/**

*@brief 设置串口数据位,停止位和效验位

*@param fd 类型 int 打开的串口文件句柄

*@param databits 类型 int 数据位 取值 为 7 或者8

*@param stopbits 类型 int 停止位 取值为 1 或者2

*@param parity 类型 int 效验类型 取值为N,E,O,,S

*/

int set_Parity(int fd,int databits,int stopbits,int parity)

{

struct termios options;

if ( tcgetattr( fd,&options) != 0) {

perror("SetupSerial 1");

return(FALSE);

}

options.c_cflag &= ~CSIZE;

switch (databits) /*设置数据位数*/

{

case 7:

options.c_cflag |= CS7;

break;

case 8:

options.c_cflag |= CS8;

break;

default:

fprintf(stderr,"Unsupported data sizen"); return (FALSE);

}

switch (parity)

{

case 'n':

case 'N':

options.c_cflag &= ~PARENB; /* Clear parity enable */

options.c_iflag &= ~INPCK; /* Enable parity checking */

break;

case 'o':

case 'O':

options.c_cflag |= (PARODD | PARENB); /* 设置为奇效验*/

options.c_iflag |= INPCK; /* Disnable parity checking */

break;

case 'e':

case 'E':

options.c_cflag |= PARENB; /* Enable parity */

options.c_cflag &= ~PARODD; /* 转换为偶效验*/

options.c_iflag |= INPCK; /* Disnable parity checking */

break;

case 'S':

case 's': /*as no parity*/

options.c_cflag &= ~PARENB;

options.c_cflag &= ~CSTOPB;break;

default:

fprintf(stderr,"Unsupported parityn");

return (FALSE);

}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.

 

 

2.3 设置停止位

switch (stopbits)

{

case 1:

options.c_cflag &= ~CSTOPB;

break;

case 2:

options.c_cflag |= CSTOPB;

break;

default:

fprintf(stderr,"Unsupported stop bitsn");

return (FALSE);

}

/* Set input parity option */

if (parity != 'n')

options.c_iflag |= INPCK;

tcflush(fd,TCIFLUSH);

options.c_cc[VTIME] = 150; /* 设置超时15 seconds*/

options.c_cc[VMIN] = 0; /* Update the options and do it NOW */

if (tcsetattr(fd,TCSANOW,&options) != 0)

{

perror("SetupSerial 3");

return (FALSE);

}

return (TRUE);

}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.

 

 

 

    在上述代码中,有两句话特别重要:

options.c_cc[VTIME] = 0; /* 设置超时0 seconds*/  

options.c_cc[VMIN] = 13; /* define the minimum bytes data to be readed*/

这两句话决定了对串口读取的函数read()的一些功能。我将着重介绍一下他们对read()函数的影响。

对串口操作的结构体是

Struct{

tcflag_t c_iflag; /*输入模式标记*/

tcflag_t c_oflag; /*输出模式标记*/

tcflag_t c_cflag; /*控制模式标记*/

tcflag_t c_lflag; /*本地模式标记*/

cc_t c_line; /*线路规程*/

cc_t c_cc[NCCS]; /*控制符号*/

};
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.

 

 

其中cc_t, c_line只有在一些特殊的系统程序(比如,设置通过tty设备来通信的网络协议)中才会用。在数组c_cc中有两个下标(VTIME和VMIN)对应的元素不是控制符,并且只是在原始模式下有效。只有在原始模式下,他们决定了read()函数在什么时候返回。在标准模式下,除非设置了O_NONBLOCK选项,否则只有当遇到文件结束符或各行的字符都已经编辑完毕后才返回。

控制符VTIME和VMIN之间有着复杂的关系。VTIME定义要求等待的零到几百毫秒的时间量(通常是一个8位的unsigned char变量,取值不能大于cc_t)。           VMIN定义了要求等待的最小字节数(不是要求读的字节数——read()的第三个参数才是指定要求读的最大字节数),这个字节数可能是0。

l) 如果VTIME取0,VMIN定义了要求等待读取的最小字节数。函数read()只有在读取了VMIN个字节的数据或者收到一个信号的时候才返回。

2) 如果VMIN取0,VTIME定义了即使没有数据可以读取,read()函数返回前也要等待几百毫秒的时间量。这时,read()函数不需要像其通常情况那样要遇到一个文件结束标志才返回0。

3) 如果VTIME和VMIN都不取0,VTIME定义的是当接收到第一个字节的数据后开始计算等待的时间量。如果当调用read函数时可以得到数据,计时器马上开始计时。如果当调用read函数时还没有任何数据可读,则等接收到第一个字节的数据后,计时器开始计时。函数read可能会在读取到VMIN个字节的数据后返回,也可能在计时完毕后返回,这主要取决于哪个条件首先实现。不过函数至少会读取到一个字节的数据,因为计时器是在读取到第一个数据时开始计时的。

4) 如果VTIME和VMIN都取0,即使读取不到任何数据,函数read也会立即返回。同时,返回值0表示read函数不需要等待文件结束标志就返回了。

这就是这两个变量对read函数的影响。

 

2.4 串口属性配置

在程序中,很容易配置串口的属性,这些属性定义在结构体struct termios中。为在程序中使用该结构体,需要包含文件,该头文件定义了结构体struct termios。该结构体定义如下:

#define NCCS 19

struct termios {
tcflag_t c_iflag; /* 输入参数 */
tcflag_t c_oflag; /* 输出参数 */
tcflag_t c_cflag; /* 控制参数*/
tcflag_t c_ispeed; /* 输入波特率 */
tcflag_t c_ospeed; /* 输出波特率 */
cc_t c_line; /* 线控制 */
cc_t c_cc[NCCS]; /* 控制字符*/
};
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.

其中成员c_line在POSIX(Portable Operating System Interface for UNIX)系统中不使用。对于支持POSIX终端接口的系统中,对于端口属性的设置和获取要用到两个重要的函数是:

(1).int tcsetattr(int fd,int opt_DE,*ptr)

该函数用来设置终端控制属性,其参数说明如下:

fd:待操作的文件描述符

opt_DE:选项值,有三个选项以供选择:

TCSANOW:  不等数据传输完毕就立即改变属性

TCSADRAIN:等待所有数据传输结束才改变属性

TCSAFLUSH:清空输入输出缓冲区才改变属性

*ptr:指向termios结构的指针

函数返回值:成功返回0,失败返回-1。

(2).int tcgetattr(int fd,*ptr)

该函数用来获取终端控制属性,它把串口的默认设置赋给了termios数据数据结构,其参数说明如下:

fd:待操作的文件描述符

*ptr:指向termios结构的指针

函数返回值:成功返回0,失败返回-1。

2.5 注意的问题:

如果不是开发终端之类的,只是串口传输数据,而不需要串口来处理,那么使用原始模式(Raw Mode)方式来通讯,设置方式如下:

options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); /*Input*/

options.c_oflag &= ~OPOST; /*Output*/

3.读写串口

3.1 串口读操作(接收端)

用open函数打开设备文件,函数返回一个文件描述符(file descriptors,fd),通过文件描述符来访问文件。读串口操作是通过read函数来完成的。函数原型如下:

int read(int fd, *buffer,length);

参数说明:

(1).int fd:文件描述符

(2).*buffer:数据缓冲区

(3).length:要读取的字节数

函数返回值:

读操作成功读取返回读取的字节数,失败则返回-1。

3.2 串口写操作(发送端)

写串口操作是通过write函数来完成的。函数原型如下:

write(int fd, *buffer,length);

参数说明:

(1).fd:文件描述符

(2).*buffer:存储写入数据的数据缓冲区

(3).length:写入缓冲去的数据字节数

函数返回值:

成功返回写入数据的字节数,该值通常等于length,如果写入失败返回-1。

例如:向终端设备发送初始化命令

设置好串口之后,读写串口就很容易了,把串口当作文件读写就是。

·发送数据

char buffer[1024];

int Length;int nByte;

nByte = write(fd, buffer ,Length)

 

4.关闭串口

关闭串口就是关闭文件。

close(fd);

5.例子

下面是一个简单的读取串口数据的例子,使用了上面定义的一些函数和头文件

 
/**********************************************************************

代码说明:使用串口二测试的,发送的数据是字符,

但是没有发送字符串结束符号,所以接收到后,后面加上了结束符号。

我测试使用的是单片机发送数据到第二个串口,测试通过。

**********************************************************************/

#define FALSE -1

#define TRUE 0

/*********************************************************************/

int OpenDev(char *Dev)

{

int fd = open( Dev, O_RDWR );

//| O_NOCTTY | O_NDELAY

if (-1 == fd)

{

perror("Can't Open Serial Port");

return -1;

}

else

return fd;

}

int main(int argc, char **argv){

int fd;

int nread;

char buff[512];

char *dev = "/dev/ttyS1"; //串口二

fd = OpenDev(dev);

set_speed(fd,19200);

if (set_Parity(fd,8,1,'N') == FALSE) {

printf("Set Parity Errorn");

exit (0);

}

while (1) //循环读取数据

{

while((nread = read(fd, buff, 512))>0)

{

printf("nLen %dn",nread);

buff[nread+1] = '';

printf( "n%s", buff);

}

}

//close(fd);

// exit (0);

}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.

 

posted on 2023-02-18 11:10  bailinjun  阅读(1856)  评论(0编辑  收藏  举报