第 K 小数

这可不是基础题的第k小数哈。

自己想出来的,感觉要容易想到,使用可持久化线段树,时间上要比y的慢一倍。大体思想就是,我们从小到大依次加入一个数,每加入一个就记录一个版本,线段树里记录区间里数的数量,在查询时,只要二分出区间数的数量大于等于k的最小版本即可,这个版本对应插入的点就是要求的第 k 小点,时间复杂度\(O(n\log^2n)\)。比 y 的 \(O(n\log n)\) 要差,但思路应该比较清晰。
题目链接

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

const int N = 100010;

int n, m;
int idx, root[N], cnt;
int g[N];

struct node
{
    int v, id;
    bool operator<(const node &W)const
    {
        return v < W.v;
    }
}a[N];

struct Node
{
    int l, r;
    int v, sum = 0;
}tr[N * 4 + N * (int)ceil(log2(N))];

void pushup(int u)
{
    int &l = tr[u].l, &r = tr[u].r;
    tr[u].sum = tr[l].sum + tr[r].sum;
}

int build(int l, int r)
{
    int p = ++ idx;
    if (l == r)
    {
        tr[p].v = -0x3f3f3f3f;
        tr[p].sum = 0;
        return p;
    }
    int mid = l + r >> 1;
    tr[p].l = build(l, mid);
    tr[p].r = build(mid + 1, r);
    pushup(p);
    return p;
}

int insert(int p, int l, int r, int x, int k)
{
    int q = ++ idx;
    tr[q] = tr[p];
    if (l == r)
    {
        tr[q].v = k;
        if (k > -0x3f3f3f3f) tr[q].sum = 1;
        return q;
    }
    int mid = l + r >> 1;
    if (x <= mid) tr[q].l = insert(tr[p].l, l, mid, x, k);
    else tr[q].r = insert(tr[p].r, mid + 1, r, x, k);
    pushup(q);
    return q;
}

int query(int p, int l, int r, int x, int y)
{
    if (x <= l && r <= y) return tr[p].sum;
    
    int mid = l + r >> 1;
    int sum = 0;
    if (x <= mid) sum += query(tr[p].l, l, mid, x, y);
    if (y > mid) sum += query(tr[p].r, mid + 1, r, x, y);
    
    return sum;
}

bool check(int x, int l, int r, int k)
{
    return query(root[x], 1, n, l, r) >= k;
}

int main()
{
    cin >> n >> m;
    
    root[0] = build(1, n);
    for (int i = 1; i <= n; i ++ ) 
    {
        int x;
        scanf("%d", &x);
        a[i] = {x, i};
        g[i] = x;
    }
    
    sort(a + 1, a + n + 1);
    
    for (int i = 1; i <= n; i ++ ) 
    {
        root[i] = insert(root[i - 1], 1, n, a[i].id, a[i].v);
        // cout << i << endl;
    }
    
    while (m -- )
    {
        int ls, rs, k;
        scanf("%d%d%d", &ls, &rs, &k);
        
        int l = 0, r = n, mid;
        while (l < r)
        {
            mid = l + r >> 1;
            if (check(mid, ls, rs, k)) r = mid;
            else l = mid + 1;
        }
        
        printf("%d\n", a[l].v);
    }
    
    // cout << query(root[5], 1, n, 2, 5);
    
    
    return 0;
    
}
posted @ 2024-06-22 16:45  blind5883  阅读(9)  评论(0编辑  收藏  举报