Kinect for Windows V2和V1对照开发___深度数据获取并用OpenCV2.4.10显示
V1深度分辨率:320x240
V2深度分辨率:512x424
1。 打开深度图像帧的方式
对于V1:
hr = m_PNuiSensor->NuiImageStreamOpen( NUI_IMAGE_TYPE_DEPTH,NUI_IMAGE_RESOLUTION_320x240,0, 2, m_hNextDepthFrameEvent, &m_hDepthStreamHandle); if( FAILED( hr ) ) { cout<<"Could notopen image stream video"<<endl; return hr; } 这样的方式能够设置分辨率
对于V2:
// Initialize the Kinect and get the depth reader IDepthFrameSource* pDepthFrameSource =NULL; 首先使用 hr = m_pKinectSensor->Open();//打开Kinect if (SUCCEEDED(hr)) { hr =m_pKinectSensor->get_DepthFrameSource(&pDepthFrameSource); } 方法get_DepthFrameSource打开深度帧的源。然后使用 if (SUCCEEDED(hr)) { hr =pDepthFrameSource->OpenReader(&m_pDepthFrameReader); } SafeRelease(pDepthFrameSource); 方法OpenReader打开深度帧读取器。
2, 更新深度帧的方式
对于V1:使用NuiImageStreamGetNextFrame方法
NuiImageStreamGetNextFrame(m_hDepthStreamHandle,0, &pImageFrame);;//得到该帧数据</span>
对于V2:使用AcquireLatestFrame方法
if (!m_pDepthFrameReader) { return; } IDepthFrame* pDepthFrame = NULL; HRESULT hr =m_pDepthFrameReader->AcquireLatestFrame(&pDepthFrame);
3, 数据的处理方式
对于V1:这样的数据获取方式比較明朗看到数据内部结构,
INuiFrameTexture *pTexture =pImageFrame->pFrameTexture; NUI_LOCKED_RECT LockedRect; pTexture->LockRect(0, &LockedRect,NULL, 0); RGBQUAD q; if( LockedRect.Pitch != 0 ) { //BYTE * pBuffer = (BYTE*)(LockedRect.pBits); //INT size = LockedRect.size; //memcpy_s(m_pDepthBuffer,size, pBuffer, size); //USHORT* pBufferRun =reinterpret_cast<USHORT*>(m_pDepthBuffer); for (int i=0; i<image.rows; i++) { //USHORT* ptr = (USHORT*)depthIndexImage->height; //USHORT* pDepthRow =(USHORT*)(i); //BYTE * pBuffer = (BYTE*)(LockedRect.pBits); uchar *ptr =image.ptr<uchar>(i); //第i行的指针 uchar * pBuffer =(uchar*)(LockedRect.pBits)+i*LockedRect.Pitch; USHORT* pBufferRun =(USHORT*) pBuffer;//注意这里须要转换,由于每一个数据是2个字节,存储的同上面的颜色信息不一样,这里是2个字节一个信息,不能再用BYTE,转化为USHORT for (int j=0; j<image.cols; j++) { //ptr[j] = 255 -(BYTE)(256*pBufferRun[j]/0x0fff);//直接将数据归一化处理 //ptr[j] = pBufferRun[i * 640 + j]; // ptr[j] = 255 -(uchar)(256 * pBufferRun[j]/0x0fff); //直接将数据归一化处理 int player =pBufferRun[j]&7; int data =(pBufferRun[j]&0xfff8) >> 3; uchar imageData = 255-(uchar)(256*data/0x0fff); q.rgbBlue = q.rgbGreen =q.rgbRed = 0; switch(player) { case 0: q.rgbRed = imageData /2; q.rgbBlue = imageData / 2; q.rgbGreen = imageData/ 2; break; case 1: q.rgbRed =imageData; break; case 2: q.rgbGreen =imageData; break; case 3: q.rgbRed = imageData /4; q.rgbGreen = q.rgbRed*4; //这里利用乘的方法,而不用原来的方法能够避免不整除的情况 q.rgbBlue =q.rgbRed*4; //能够在后面的getTheContour()中配合使用,避免遗漏一些情况 break; case 4: q.rgbBlue = imageData /4; q.rgbRed = q.rgbBlue*4; q.rgbGreen =q.rgbBlue*4; break; case 5: q.rgbGreen = imageData/ 4; q.rgbRed =q.rgbGreen*4; q.rgbBlue =q.rgbGreen*4; break; case 6: q.rgbRed = imageData /2; q.rgbGreen = imageData/ 2; q.rgbBlue =q.rgbGreen*2; break; case 7: q.rgbRed = 255 - (imageData / 2 ); q.rgbGreen = 255 - (imageData / 2 ); q.rgbBlue = 255 - (imageData / 2 ); } ptr[3*j] = q.rgbBlue; ptr[3*j+1] = q.rgbGreen; ptr[3*j+2] = q.rgbRed; } } imshow("depthImage",image); //显示图像 得到的终于形式能够用OpenCV显示。
对于V2:
RGBQUAD* m_pDepthRGBX;;//深度数据存储位置 m_pDepthRGBX(NULL)//构造函数初始化 // create heap storage for color pixel data in RGBXformat m_pDepthRGBX = new RGBQUAD[cDepthWidth *cDepthHeight]; //下边就是AcquireLatestFrame之后处理数据 INT64 nTime = 0; IFrameDescription* pFrameDescription =NULL; int nWidth = 0; int nHeight = 0; USHORTnDepthMinReliableDistance = 0; USHORT nDepthMaxDistance =0; UINT nBufferSize = 0; UINT16 *pBuffer = NULL; if (SUCCEEDED(hr)) { hr =pDepthFrame->AccessUnderlyingBuffer(&nBufferSize, &pBuffer); } if (SUCCEEDED(hr)) { ProcessDepth(nTime, pBuffer,nWidth, nHeight, nDepthMinReliableDistance, nDepthMaxDistance); }
4,OpenCV显示
int width = 0; int height = 0; pDescription->get_Width( &width ); // 512 pDescription->get_Height( &height ); // 424 unsigned int bufferSize = width * height * sizeof( unsigned short ); // Range unsigned short min = 0; unsigned short max = 0; pDepthSource->get_DepthMinReliableDistance( &min ); // 500 pDepthSource->get_DepthMaxReliableDistance( &max ); // 4500 cout << "Range : " << min << " - " << max << std::endl; //创建尺寸为height x width 的1通道8位图像 Mat bufferMat( height, width, CV_16UC1 ); Mat depthMat( height, width, CV_8UC1 ); while( 1 ){ // 更新深度帧 IDepthFrame* pDepthFrame = nullptr; hResult = pDepthReader->AcquireLatestFrame( &pDepthFrame ); if( SUCCEEDED( hResult ) ){ hResult = pDepthFrame->AccessUnderlyingBuffer( &bufferSize, reinterpret_cast<UINT16**>( &bufferMat.data ) ); if( SUCCEEDED( hResult ) ){ bufferMat.convertTo( depthMat, CV_8U, -255.0f / 4500.0f, 255.0f ); } } SafeRelease( pDepthFrame ); imshow( "Depth", depthMat );
5。V2+VS2012+OpenCV代码
#include <Windows.h> #include <Kinect.h> #include <opencv2/opencv.hpp> #include <cstdlib> using namespace std; using namespace cv; //释放接口须要自定义 template<class Interface> inline void SafeRelease( Interface *& pInterfaceToRelease ) { if( pInterfaceToRelease != NULL ){ pInterfaceToRelease->Release(); pInterfaceToRelease = NULL; } } int main( int argc, char **argv[] ) { //OpenCV中开启CPU的硬件指令优化功能函数 setUseOptimized( true ); // 打开kinect IKinectSensor* pSensor; HRESULT hResult = S_OK; hResult = GetDefaultKinectSensor( &pSensor ); if( FAILED( hResult ) ){ cerr << "Error : GetDefaultKinectSensor" << std::endl; return -1; } hResult = pSensor->Open(); if( FAILED( hResult ) ){ cerr << "Error : IKinectSensor::Open()" << std::endl; return -1; } // 深度帧源 IDepthFrameSource* pDepthSource; hResult = pSensor->get_DepthFrameSource( &pDepthSource ); if( FAILED( hResult ) ){ cerr << "Error : IKinectSensor::get_DepthFrameSource()" << std::endl; return -1; } // 深度帧读取 IDepthFrameReader* pDepthReader; hResult = pDepthSource->OpenReader( &pDepthReader ); if( FAILED( hResult ) ){ cerr << "Error : IDepthFrameSource::OpenReader()" << std::endl; return -1; } // Description IFrameDescription* pDescription; hResult = pDepthSource->get_FrameDescription( &pDescription ); if( FAILED( hResult ) ){ cerr << "Error : IDepthFrameSource::get_FrameDescription()" << std::endl; return -1; } int width = 0; int height = 0; pDescription->get_Width( &width ); // 512 pDescription->get_Height( &height ); // 424 unsigned int bufferSize = width * height * sizeof( unsigned short ); // Range unsigned short min = 0; unsigned short max = 0; pDepthSource->get_DepthMinReliableDistance( &min ); // 500 pDepthSource->get_DepthMaxReliableDistance( &max ); // 4500 cout << "Range : " << min << " - " << max << std::endl; //创建尺寸为height x width 的1通道8位图像 Mat bufferMat( height, width, CV_16UC1 ); Mat depthMat( height, width, CV_8UC1 ); while( 1 ){ // 更新深度帧 IDepthFrame* pDepthFrame = nullptr; hResult = pDepthReader->AcquireLatestFrame( &pDepthFrame ); if( SUCCEEDED( hResult ) ){ hResult = pDepthFrame->AccessUnderlyingBuffer( &bufferSize, reinterpret_cast<UINT16**>( &bufferMat.data ) ); if( SUCCEEDED( hResult ) ){ bufferMat.convertTo( depthMat, CV_8U, -255.0f / 4500.0f, 255.0f ); } } SafeRelease( pDepthFrame ); imshow( "Depth", depthMat ); if( cv::waitKey( 30 ) == VK_ESCAPE ){ break; } } SafeRelease( pDepthSource ); SafeRelease( pDepthReader ); SafeRelease( pDescription ); if( pSensor ){ pSensor->Close(); } SafeRelease( pSensor ); return 0; }