设计一个算法,求非空二叉树中指定的第k层(k>1)的叶子节点的个数

思想:採用基于层序遍历的方法。

用level扫描各层节点,若某一层的节点出队后。rear指向该层中最右节点。则将rear赋值给last(对于第一层。last=1).在出队时,若front=last,表示这一层处理完成,让层号level增1,并置last为下一层最右节点。那么怎样求一层的最右节点呢?这是由于第一层仅仅有一个节点,它就是最右节点。对于其它层。上一层最右节点最后进队的孩子一定是该层的最右节点。

比如,对于如图所看到的的二叉树。求k=3的叶子节点个数的步骤例如以下:level=1;A进队时rear=1,last=rear=1,出队front=1,再将B和C进队,此时rear=3,因为last=front成立,表示处理下一层。让last=rear=3,level=level+1=2; 出队front=2即B节点。将D和E进队,出队front=3即C节点。将F进队,此时rear=6,因为front=rear成立,表示处理下一层。让last=rear=6,level=level+1=3;出队D(front=4),level=k且D为叶子节点,则leaf=leaf+1=1,出队E(front=5),level=k且E为叶子节点。则leaf=leaf+1=2,出队F(front=6),level=k且F为叶子节点,则leaf=leaf+1=3,因为front=last成立。表示处理下一层,让last=rear=6(没有新节点进队),level=level+1=4;level>k,返回leaf=3.













相应的算法例如以下:

int LeafKLevel(BTNode *b,int k)

{

BTNode *Qu[MaxSize];//定义循环队列

int front, rear;//定义队首、队尾指针

int leaf=0;//leaf累计叶子节点个数

int last;//定义当前层中最右节点在队列中的位置

int level;//定义当前节点的层号

front=rear=0;//置队列为空队列

if(b==NULL||k<=1)

return 0;

rear=(rear+1)%MaxSize;//节点指针进队

Qu[rear]=b;

last=rear;level=1;//第一层的最右节点在队列中的位置为1

while(front!=rear)//队列不为空时循环

{

front=(front+1)%MaxSize;

b=Qu[front];//队头出队

if(level==k&&b->lchild==NULL&&b->rchild==NULL)

leaf++;//若*b为level层叶子节点。则递增1

if(b->lchild!=NULL)//左孩子进队

{

rear=(rear+1)%MaxSize;

Qu[rear]=b->lchild;

}

if(b->rchild!=NULL)//右孩子进队

{

rear=(rear+1)%MaxSize;

Qu[rear]=b->rchild;

}

if(front==last)//同层最右节点处理完成,层数增1

{

level++;

last=rear;//让last指向下一层的最右节点在队列中的位置

}

  if(level>k)//当层号大于k时返回leaf,不再继续

return leaf;

}

}

对于如图所看到的的二叉树,求各层叶子节点个数结果如图所看到的:

二叉树:A(B(D(,G)),C(E,F))

第1层叶子节点的个数=0

第2层叶子节点的个数=0

第3层叶子节点的个数=3

posted @ 2016-02-01 16:53  blfshiye  阅读(1897)  评论(0编辑  收藏  举报