UESTC-888-Absurdistan Roads(kruskal+floyd)
The people of Absurdistan discovered how to build roads only last year. After the discovery, every city decided to build their own road connecting their city
with another city. Each newly built road can be used in both directions.
Absurdistan is full of surprising coincidences. It took all
to travel from every city to every other city using the newly built roads.
You bought a tourist guide which does not have a map of the country with the new roads. It only contains a huge table with the shortest distances between all
pairs of cities using the newly built roads. You would like to know between which pairs of cities there are roads and how long they are, because you want to
reconstruct the map of the
You get a table of shortest distances between all pairs of cities in Absurdistan using the
network of Absurdistan. There might be multiple road networks with
those networks.
Input
For each test case:
- A line containing an integer
N (2≤N≤2000) -- the number of cities and roads. N lines withN numbers each. Thej -th number of thei -th line is the shortest distance from cityi to cityj . All distances between two distinct cities will be- positive and at most
1000000 . The distance fromi toi will always be0 and the distance fromi toj will be the same as the distance fromj toi .
Output
For each test case:
- Print
N lines with three integers 'a b c ' denoting that there is a road between cities1≤a≤N and1≤b≤N of length1≤c≤1000000 , wherea≠b . If there are - multiple solutions, you can print any one and you can print the roads in any order. At least one solution is guaranteed to exist.
Print a blank line between every two test cases.
Sample input and output
Sample Input | Sample Output |
---|---|
4 0 1 2 1 1 0 2 1 2 2 0 1 1 1 1 0 4 0 1 1 1 1 0 2 2 1 2 0 2 1 2 2 0 3 0 4 1 4 0 3 1 3 0 |
2 1 1 4 1 1 4 2 1 4 3 1 2 1 1 3 1 1 4 1 1 2 1 1 3 1 1 2 1 4 3 2 3 |
Source
思路:先用kruskal求出n-1条边。那么n-1条边必然是满足的,接下来仅仅须要再找一条边就能够了,直接按权值从小到大枚举全部边直到找到一条边的距离与前面n-1条边构成的图里面该条边的距离不相等就可以,假设没找到就随便输出前n-1条边中的随意一条。
#include <stdio.h> #include <algorithm> #define INF 999999999 using namespace std; struct E{ int u,v,val; bool operator<(const E &p) const { return val<p.val; } }e[4000005]; int node[2005],dis[2005][2005]; int findroot(int x) { if(node[x]!=x) return node[x]=findroot(node[x]); return node[x]; } int main() { int n,i,j,k,t,u,v,val,cnt,roota,rootb; bool first=1; while(~scanf("%d",&n)) { if(first) first=0; else puts(""); cnt=0; for(i=1;i<=n;i++) for(j=1;j<=n;j++) { scanf("%d",&val); if(i<=j) continue; e[cnt].u=i; e[cnt].v=j; e[cnt++].val=val; } sort(e,e+cnt); for(i=1;i<=n;i++) node[i]=i; for(i=1;i<=n;i++) for(j=1;j<=n;j++) dis[i][j]=INF; t=0; for(i=0;i<cnt;i++) { roota=findroot(e[i].u); rootb=findroot(e[i].v); if(roota!=rootb) { node[roota]=rootb; dis[e[i].u][e[i].v]=dis[e[i].v][e[i].u]=e[i].val; u=e[i].u,v=e[i].v,val=e[i].val; printf("%d %d %d\n",e[i].u,e[i].v,e[i].val); t++; if(t>=n-1) break; } } for(k=1;k<=n;k++) { for(i=1;i<=n;i++) { for(j=1;j<=n;j++) { if(dis[i][k]==INF) break;//没有这个优化直接T了。。。 dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]); } } } for(i=0;i<cnt;i++) { if(e[i].val!=dis[e[i].u][e[i].v]) { printf("%d %d %d\n",e[i].u,e[i].v,e[i].val); break; } } if(i==cnt) printf("%d %d %d\n",u,v,val); } }