Android 热修复 Tinker接入及源代码浅析

本文已在我的公众号hongyangAndroid首发。
转载请标明出处:
http://blog.csdn.net/lmj623565791/article/details/54882693
本文出自张鸿洋的博客

一、概述

放了一个大长假。happy。先祝大家2017年笑口常开。

假期中一行代码没写,可是想着立即要上班了。赶紧写篇博客回想下技能,于是便有了本文。

热修复这项技术,基本上已经成为项目比較重要的模块了。主要由于项目在上线之后,都难免会有各种问题,而依靠发版去修复问题,成本太高了。

如今热修复的技术基本上有阿里的AndFix、QZone的方案、美团提出的思想方案以及腾讯的Tinker等。

当中AndFix可能接入是最简单的一个(和Tinker命令行接入方式差点儿相同),只是兼容性还是是有一定的问题的。QZone方案对性能会有一定的影响,且在Art模式下出现内存错乱的问题(事实上这个问题我之前并不清晰,主要是tinker在MDCC上指出的);美团提出的思想方案主要是基于Instant Run的原理,眼下尚未开源。只是这个方法我还是蛮喜欢的。主要是兼容性好。

这么看来,假设选择开源方案,tinker眼下是最佳的选择,tinker的介绍有这么一句:

Tinker已执行在微信的数亿Android设备上,那么为什么你不使用Tinker呢?

好了,说了这么多。以下来看看tinker怎样接入,以及tinker的大致的原理分析。希望通过本文能够实现帮助大家更好的接入tinker。以及去了解tinker的一个大致的原理。

二、接入Tinker

接入tinker眼下给了两种方式。一种是基于命令行的方式。相似于AndFix的接入方式;一种就是gradle的方式。

考虑早期使用Andfix的app应该挺多的。以及非常多人对gradle的相关配置还是觉得比較繁琐的,以下对两种方式都介绍下。

(1)命令行接入

接入之前我们先考虑下。接入的话。正常须要的前提(开启混淆的状态)。

  • 对于API

    一般来说,我们接入热修库。会在Application#onCreate中进行一下初始化操作。然后在某个地方去调用相似loadPatch这种API去载入patch文件。

  • 对于patch的生成

    简单的方式就是通过两个apk做对照然后生成;须要注意的是:两个apk做对照,须要的前提条件,第二次打包混淆所使用的mapping文件应该和线上apk是一致的。

最后就是看看这个项目有没有须要配置混淆;

有了大致的概念,我们就基本了解命令行接入tinker,大致须要哪些步骤了。

依赖引入

dependencies {
    // ...
    //可选。用于生成application类
    provided('com.tencent.tinker:tinker-android-anno:1.7.7')
    //tinker的核心库
    compile('com.tencent.tinker:tinker-android-lib:1.7.7')
}

顺便加一下签名的配置:

android{
  //...
    signingConfigs {
        release {
            try {
                storeFile file("release.keystore")
                storePassword "testres"
                keyAlias "testres"
                keyPassword "testres"
            } catch (ex) {
                throw new InvalidUserDataException(ex.toString())
            }
        }
    }

    buildTypes {
        release {
            minifyEnabled true
            signingConfig signingConfigs.release
            proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
        }
        debug {
            debuggable true
            minifyEnabled true
            signingConfig signingConfigs.release
            proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
        }
    }
}

文末会有demo的下载地址,能够直接參考build.gradle文件,不用操心这些签名文件去哪找。

API引入

API主要就是初始化和loadPacth。

正常情况下,我们会考虑在Application的onCreate中去初始化,只是tinker推荐以下的写法:

@DefaultLifeCycle(application = ".SimpleTinkerInApplication",
        flags = ShareConstants.TINKER_ENABLE_ALL,
        loadVerifyFlag = false)
public class SimpleTinkerInApplicationLike extends ApplicationLike {
    public SimpleTinkerInApplicationLike(Application application, int tinkerFlags, boolean tinkerLoadVerifyFlag, long applicationStartElapsedTime, long applicationStartMillisTime, Intent tinkerResultIntent) {
        super(application, tinkerFlags, tinkerLoadVerifyFlag, applicationStartElapsedTime, applicationStartMillisTime, tinkerResultIntent);
    }

    @Override
    public void onBaseContextAttached(Context base) {
        super.onBaseContextAttached(base);
    }

    @Override
    public void onCreate() {
        super.onCreate();
        TinkerInstaller.install(this);
    }
}

ApplicationLike通过名字你可能会猜。并不是是Application的子类。而是一个相似Application的类。

tinker建议编写一个ApplicationLike的子类,你能够当成Application去使用,注意顶部的注解:@DefaultLifeCycle,其application属性,会在编译期生成一个SimpleTinkerInApplication类。

所以,尽管我们这么写了,可是实际上Application会在编译期生成。所以AndroidManifest.xml中是这种:

 <application
        android:name=".SimpleTinkerInApplication"
        .../>

编写假设报红。能够build下。

这样事实上也能猜出来。这个注解背后有个Annotation Processor在做处理,假设你没了解过,能够看下:

通过该文会对一个编译时注解的执行流程和基本API有一定的掌握。文中也会对tinker该部分的源代码做解析。

上述,就完毕了tinker的初始化,那么调用loadPatch的时机,我们直接在Activity中加入一个Button设置:


public class MainActivity extends AppCompatActivity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
    }


    public void loadPatch(View view) {
        TinkerInstaller.onReceiveUpgradePatch(getApplicationContext(),
                Environment.getExternalStorageDirectory().getAbsolutePath() + "/patch_signed.apk");
    }
}

我们会将patch文件直接push到sdcard根文件夹;

所以一定要注意:加入SDCard权限。假设你是6.x以上的系统,自己加入上授权代码,或者手动在设置页面打开SDCard读写权限。

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

除以以外。有个特殊的地方就是tinker须要在AndroidManifest.xml中指定TINKER_ID。

<application>
  <meta-data
            android:name="TINKER_ID"
            android:value="tinker_id_6235657" />
    //...
</application>

到此API相关的就结束了,剩下的就是考虑patch怎样生成。

patch生成

tinker提供了patch生成的工具。源代码见:tinker-patch-cli,打成一个jar就能够使用,而且提供了命令行相关的參数以及文件。

命令行例如以下:

java -jar tinker-patch-cli-1.7.7.jar -old old.apk -new new.apk -config tinker_config.xml -out output

须要注意的就是tinker_config.xml,里面包括tinker的配置,比如签名文件等。

这里我们直接使用tinker提供的签名文件,所以不须要做改动,只是里面有个Application的item改动为与本例一致:

<loader value="com.zhy.tinkersimplein.SimpleTinkerInApplication"/>

大致的文件结构例如以下:

能够在tinker-patch-cli中提取,或者直接下载文末的样例。

上述介绍了patch生成的命令。最后须要注意的就是,在第一次打出apk的时候。保留下生成的mapping文件,在/build/outputs/mapping/release/mapping.txt

能够copy到与proguard-rules.pro同文件夹,同一时候在第二次打修复包的时候,在proguard-rules.pro中加入上:

-applymapping mapping.txt

保证兴许的打包与线上包使用的是同一个mapping文件。

tinker本身的混淆相关配置,能够參考:

假设,你对该部分描写叙述不了解,能够直接查看源代码就可以。

測试

首先随便生成一个apk(API、混淆相关已经依照上述引入)。安装到手机或者模拟器上。

然后,copy出mapping.txt文件。设置applymapping。改动代码。再次打包,生成new.apk。

两次的apk,能够通过命令行指令去生成patch文件。

假设你下载本例,命令须要在[该文件夹]下执行。

终于会在output文件夹中生成产物:

我们直接将patch_signed.apk push到sdcard,点击loadpatch。一定要观察命令行是否成功。

本例改动了title。

点击loadPatch,观察log。假设成功,应用默觉得重新启动,然后再次启动就可以达到修复效果。

到这里命令行的方式就介绍完了,和Andfix的接入的方式基本上是一样的。

值得注意的是:该例仅展示了主要的接入。对于tinker的各种配置信息。还是须要去读tinker的文档(假设你确定要使用)tinker-wiki

(2)gradle接入

gradle接入的方式应该算是主流的方式,所以tinker也直接给出了样例,单独将该tinker-sample-android以project方式引入就可以。

引入之后,能够查看其接入API的方式。以及相关配置。

在你每次build时,会在build/bakApk下生成本地打包的apk,R文件,以及mapping文件。

假设你须要生成patch文件。能够通过:

./gradlew tinkerPatchRelease  // 或者 ./gradlew tinkerPatchDebug

生成。

生成文件夹为:build/outputs/tinkerPatch

须要注意的是。须要在app/build.gradle中设置相比較的apk(即old.apk,本次为new.apk),

ext {
    tinkerEnabled = true
    //old apk file to build patch apk
    tinkerOldApkPath = "${bakPath}/old.apk"
    //proguard mapping file to build patch apk
    tinkerApplyMappingPath = "${bakPath}/old-mapping.txt"
}

提供的样例,基本上展示了tinker的自己定义扩展的方式。详细还能够參考:

所以,假设你使用命令行方式接入,也不要忘了学习下其支持哪些扩展。

三、Application是怎样编译时生成的

从凝视和命名上看:

//可选,用于生成application类
provided('com.tencent.tinker:tinker-android-anno:1.7.7')

明显是该库。其结构例如以下:

典型的编译时注解的项目。源代码见tinker-android-anno

入口为com.tencent.tinker.anno.AnnotationProcessor,能够在该services/javax.annotation.processing.Processor文件里找到处理类全路径。

再次建议,假设你不了解。简单阅读下Android 怎样编写基于编译时注解的项目该文。

直接看AnnotationProcessor的process方法:

@Override
public boolean process(Set<?

extends TypeElement> annotations, RoundEnvironment roundEnv) { processDefaultLifeCycle(roundEnv.getElementsAnnotatedWith(DefaultLifeCycle.class)); return true; }

直接调用了processDefaultLifeCycle:

private void processDefaultLifeCycle(Set<?

extends Element> elements) { // 被注解DefaultLifeCycle标识的对象 for (Element e : elements) { // 拿到DefaultLifeCycle注解对象 DefaultLifeCycle ca = e.getAnnotation(DefaultLifeCycle.class); String lifeCycleClassName = ((TypeElement) e).getQualifiedName().toString(); String lifeCyclePackageName = lifeCycleClassName.substring(0, lifeCycleClassName.lastIndexOf('.')); lifeCycleClassName = lifeCycleClassName.substring(lifeCycleClassName.lastIndexOf('.') + 1); String applicationClassName = ca.application(); if (applicationClassName.startsWith(".")) { applicationClassName = lifeCyclePackageName + applicationClassName; } String applicationPackageName = applicationClassName.substring(0, applicationClassName.lastIndexOf('.')); applicationClassName = applicationClassName.substring(applicationClassName.lastIndexOf('.') + 1); String loaderClassName = ca.loaderClass(); if (loaderClassName.startsWith(".")) { loaderClassName = lifeCyclePackageName + loaderClassName; } // /TinkerAnnoApplication.tmpl final InputStream is = AnnotationProcessor.class.getResourceAsStream(APPLICATION_TEMPLATE_PATH); final Scanner scanner = new Scanner(is); final String template = scanner.useDelimiter("\\A").next(); final String fileContent = template .replaceAll("%PACKAGE%", applicationPackageName) .replaceAll("%APPLICATION%", applicationClassName) .replaceAll("%APPLICATION_LIFE_CYCLE%", lifeCyclePackageName + "." + lifeCycleClassName) .replaceAll("%TINKER_FLAGS%", "" + ca.flags()) .replaceAll("%TINKER_LOADER_CLASS%", "" + loaderClassName) .replaceAll("%TINKER_LOAD_VERIFY_FLAG%", "" + ca.loadVerifyFlag()); JavaFileObject fileObject = processingEnv.getFiler().createSourceFile(applicationPackageName + "." + applicationClassName); processingEnv.getMessager().printMessage(Diagnostic.Kind.NOTE, "Creating " + fileObject.toUri()); Writer writer = fileObject.openWriter(); PrintWriter pw = new PrintWriter(writer); pw.print(fileContent); pw.flush(); writer.close(); } }

代码比較简单,能够分三部分理解:

  • 步骤1:首先找到被DefaultLifeCycle标识的Element(为类对象TypeElement),得到该对象的包名,类名等信息,然后通过该对象。拿到@DefaultLifeCycle对象,获取该注解中声明属性的值。

  • 步骤2:读取一个模板文件,读取为字符串。将各个占位符通过步骤1中的值替代。
  • 步骤3:通过JavaFileObject将替换完毕的字符串写文件。事实上就是本例中的Application对象。

我们看一眼模板文件:

package %PACKAGE%;

import com.tencent.tinker.loader.app.TinkerApplication;

/**
 *
 * Generated application for tinker life cycle
 *
 */
public class %APPLICATION% extends TinkerApplication {

    public %APPLICATION%() {
        super(%TINKER_FLAGS%, "%APPLICATION_LIFE_CYCLE%", "%TINKER_LOADER_CLASS%", %TINKER_LOAD_VERIFY_FLAG%);
    }

}

相应我们的SimpleTinkerInApplicationLike

@DefaultLifeCycle(application = ".SimpleTinkerInApplication",
        flags = ShareConstants.TINKER_ENABLE_ALL,
        loadVerifyFlag = false)
public class SimpleTinkerInApplicationLike extends ApplicationLike {}

主要就几个占位符:

  • 包名,假设application属性值以点開始。则同包;否则则截取
  • 类名,application属性值中的类名
  • %TINKER_FLAGS%相应flags
  • %APPLICATION_LIFE_CYCLE%,编写的ApplicationLike的全路径
  • “%TINKER_LOADER_CLASS%”。这个值我们没有设置,实际上相应@DefaultLifeCycle的loaderClass属性,默认值为com.tencent.tinker.loader.TinkerLoader
  • %TINKER_LOAD_VERIFY_FLAG%相应loadVerifyFlag

于是终于生成的代码为:

/**
 *
 * Generated application for tinker life cycle
 *
 */
public class SimpleTinkerInApplication extends TinkerApplication {

    public SimpleTinkerInApplication() {
        super(7, "com.zhy.tinkersimplein.SimpleTinkerInApplicationLike", "com.tencent.tinker.loader.TinkerLoader", false);
    }

}

tinker这么做的目的。文档上是这么说的:

为了降低错误的出现,推荐使用Annotation生成Application类。

这样大致了解了Application是怎样生成的。

接下来我们大致看一下tinker的原理。

四、原理

来源于:https://github.com/Tencent/tinker

tinker贴了一张大致的原理图。

能够看出:

tinker将old.apk和new.apk做了diff,拿到patch.dex。然后将patch.dex与本机中apk的classes.dex做了合并。生成新的classes.dex,执行时通过反射将合并后的dex文件放置在载入的dexElements数组的前面。

执行时替代的原理,事实上和Qzone的方案差点儿相同。都是去反射改动dexElements。

两者的差异是:Qzone是直接将patch.dex插到数组的前面;而tinker是将patch.dex与app中的classes.dex合并后的全量dex插在数组的前面。

tinker这么做的目的还是由于Qzone方案中提到的CLASS_ISPREVERIFIED的解决方式存在问题;而tinker相当于换个思路攻克了该问题。

接下来我们就从代码中去验证该原理。

本片文章源代码分析的两条线:

  • 应用启动时,从默认文件夹载入合并后的classes.dex
  • patch下发后,合成classes.dex至目标文件夹

五、源代码分析

(1)载入patch

载入的代码实际上在生成的Application中调用的,其父类为TinkerApplication,在其attachBaseContext中辗转会调用到loadTinker()方法,在该方法内部,反射调用了TinkerLoader的tryLoad方法。

@Override
public Intent tryLoad(TinkerApplication app, int tinkerFlag, boolean tinkerLoadVerifyFlag) {
    Intent resultIntent = new Intent();

    long begin = SystemClock.elapsedRealtime();
    tryLoadPatchFilesInternal(app, tinkerFlag, tinkerLoadVerifyFlag, resultIntent);
    long cost = SystemClock.elapsedRealtime() - begin;
    ShareIntentUtil.setIntentPatchCostTime(resultIntent, cost);
    return resultIntent;
}

tryLoadPatchFilesInternal中会调用到loadTinkerJars方法:

private void tryLoadPatchFilesInternal(TinkerApplication app, int tinkerFlag, boolean tinkerLoadVerifyFlag, Intent resultIntent) {
    // 省略大量安全性校验代码

    if (isEnabledForDex) {
        //tinker/patch.info/patch-641e634c/dex
        boolean dexCheck = TinkerDexLoader.checkComplete(patchVersionDirectory, securityCheck, resultIntent);
        if (!dexCheck) {
            //file not found, do not load patch
            Log.w(TAG, "tryLoadPatchFiles:dex check fail");
            return;
        }
    }

    //now we can load patch jar
    if (isEnabledForDex) {
        boolean loadTinkerJars = TinkerDexLoader.loadTinkerJars(app, tinkerLoadVerifyFlag, patchVersionDirectory, resultIntent, isSystemOTA);
        if (!loadTinkerJars) {
            Log.w(TAG, "tryLoadPatchFiles:onPatchLoadDexesFail");
            return;
        }
    }
}

TinkerDexLoader.checkComplete主要是用于检查下发的meta文件里记录的dex信息(meta文件。能够查看生成patch的产物。在assets/dex-meta.txt),检查meta文件里记录的dex文件信息相应的dex文件是否存在,并把值存在TinkerDexLoader的静态变量dexList中。

TinkerDexLoader.loadTinkerJars传入四个參数,分别为application,tinkerLoadVerifyFlag(注解上声明的值。传入为false)。patchVersionDirectory当前version的patch文件夹,intent,当前patch是否仅适用于art。

@TargetApi(Build.VERSION_CODES.ICE_CREAM_SANDWICH)
public static boolean loadTinkerJars(Application application, boolean tinkerLoadVerifyFlag, 
    String directory, Intent intentResult, boolean isSystemOTA) {
        PathClassLoader classLoader = (PathClassLoader) TinkerDexLoader.class.getClassLoader();

        String dexPath = directory + "/" + DEX_PATH + "/";
        File optimizeDir = new File(directory + "/" + DEX_OPTIMIZE_PATH);

        ArrayList<File> legalFiles = new ArrayList<>();

        final boolean isArtPlatForm = ShareTinkerInternals.isVmArt();
        for (ShareDexDiffPatchInfo info : dexList) {
            //for dalvik, ignore art support dex
            if (isJustArtSupportDex(info)) {
                continue;
            }
            String path = dexPath + info.realName;
            File file = new File(path);

            legalFiles.add(file);
        }
        // just for art
        if (isSystemOTA) {
            parallelOTAResult = true;
            parallelOTAThrowable = null;
            Log.w(TAG, "systemOTA, try parallel oat dexes!!!!!");

            TinkerParallelDexOptimizer.optimizeAll(
                legalFiles, optimizeDir,
                new TinkerParallelDexOptimizer.ResultCallback() {
                }
            );

        SystemClassLoaderAdder.installDexes(application, classLoader, optimizeDir, legalFiles);
        return true;
    }

找出仅支持art的dex。且当前patch是否仅适用于art时。并行去loadDex。

关键是最后的installDexes:

@SuppressLint("NewApi")
public static void installDexes(Application application, PathClassLoader loader, File dexOptDir, List<File> files)
    throws Throwable {

    if (!files.isEmpty()) {
        ClassLoader classLoader = loader;
        if (Build.VERSION.SDK_INT >= 24) {
            classLoader = AndroidNClassLoader.inject(loader, application);
        }
        //because in dalvik, if inner class is not the same classloader with it wrapper class.
        //it won't fail at dex2opt
        if (Build.VERSION.SDK_INT >= 23) {
            V23.install(classLoader, files, dexOptDir);
        } else if (Build.VERSION.SDK_INT >= 19) {
            V19.install(classLoader, files, dexOptDir);
        } else if (Build.VERSION.SDK_INT >= 14) {
            V14.install(classLoader, files, dexOptDir);
        } else {
            V4.install(classLoader, files, dexOptDir);
        }
        //install done
        sPatchDexCount = files.size();
        Log.i(TAG, "after loaded classloader: " + classLoader + ", dex size:" + sPatchDexCount);

        if (!checkDexInstall(classLoader)) {
            //reset patch dex
            SystemClassLoaderAdder.uninstallPatchDex(classLoader);
            throw new TinkerRuntimeException(ShareConstants.CHECK_DEX_INSTALL_FAIL);
        }
    }
}

这里实际上就是依据不同的系统版本号,去反射处理dexElements。

我们看一下V19的实现(主要我看了下本机仅仅有个22的源代码~):

private static final class V19 {

    private static void install(ClassLoader loader, List<File> additionalClassPathEntries,
                                File optimizedDirectory)
        throws IllegalArgumentException, IllegalAccessException,
        NoSuchFieldException, InvocationTargetException, NoSuchMethodException, IOException {

        Field pathListField = ShareReflectUtil.findField(loader, "pathList");
        Object dexPathList = pathListField.get(loader);
        ArrayList<IOException> suppressedExceptions = new ArrayList<IOException>();
        ShareReflectUtil.expandFieldArray(dexPathList, "dexElements", makeDexElements(dexPathList,
            new ArrayList<File>(additionalClassPathEntries), optimizedDirectory,
            suppressedExceptions));
        if (suppressedExceptions.size() > 0) {
            for (IOException e : suppressedExceptions) {
                Log.w(TAG, "Exception in makeDexElement", e);
                throw e;
            }
        }
    }
}        
  1. 找到PathClassLoader(BaseDexClassLoader)对象中的pathList对象
  2. 依据pathList对象找到当中的makeDexElements方法,传入patch相关的相应的实參,返回Element[]对象
  3. 拿到pathList对象中原本的dexElements方法
  4. 步骤2与步骤3中的Element[]数组进行合并,将patch相关的dex放在数组的前面
  5. 最后将合并后的数组。设置给pathList

这里事实上和Qzone的提出的方案基本是一致的。假设你曾经未了解过Qzone的方案。能够參考此文:

(2)合成patch

这里的入口为:

 TinkerInstaller.onReceiveUpgradePatch(getApplicationContext(),
                Environment.getExternalStorageDirectory().getAbsolutePath() + "/patch_signed.apk");

上述代码会调用DefaultPatchListener中的onPatchReceived方法:

# DefaultPatchListener
@Override
public int onPatchReceived(String path) {

    int returnCode = patchCheck(path);

    if (returnCode == ShareConstants.ERROR_PATCH_OK) {
        TinkerPatchService.runPatchService(context, path);
    } else {
        Tinker.with(context).getLoadReporter().onLoadPatchListenerReceiveFail(new File(path), returnCode);
    }
    return returnCode;

}

首先对tinker的相关配置(isEnable)以及patch的合法性进行检測,假设合法,则调用TinkerPatchService.runPatchService(context, path);

public static void runPatchService(Context context, String path) {
    try {
        Intent intent = new Intent(context, TinkerPatchService.class);
        intent.putExtra(PATCH_PATH_EXTRA, path);
        intent.putExtra(RESULT_CLASS_EXTRA, resultServiceClass.getName());
        context.startService(intent);
    } catch (Throwable throwable) {
        TinkerLog.e(TAG, "start patch service fail, exception:" + throwable);
    }
}

TinkerPatchService是IntentService的子类,这里通过intent设置了两个參数。一个是patch的路径,一个是resultServiceClass,该值是调用Tinker.install的时候设置的。默觉得DefaultTinkerResultService.class。由于是IntentService。直接看onHandleIntent就可以,假设你对IntentService陌生,能够查看此文:Android IntentService全然解析 当Service遇到Handler

@Override
protected void onHandleIntent(Intent intent) {
    final Context context = getApplicationContext();
    Tinker tinker = Tinker.with(context);


    String path = getPatchPathExtra(intent);

    File patchFile = new File(path);

    boolean result;

    increasingPriority();
    PatchResult patchResult = new PatchResult();

    result = upgradePatchProcessor.tryPatch(context, path, patchResult);

    patchResult.isSuccess = result;
    patchResult.rawPatchFilePath = path;
    patchResult.costTime = cost;
    patchResult.e = e;

    AbstractResultService.runResultService(context, patchResult, getPatchResultExtra(intent));

}

比較清晰,主要关注upgradePatchProcessor.tryPatch方法。调用的是UpgradePatch.tryPatch。ps:这里有个有意思的地方increasingPriority()。其内部实现为:

private void increasingPriority() {
    TinkerLog.i(TAG, "try to increase patch process priority");
    try {
        Notification notification = new Notification();
        if (Build.VERSION.SDK_INT < 18) {
            startForeground(notificationId, notification);
        } else {
            startForeground(notificationId, notification);
            // start InnerService
            startService(new Intent(this, InnerService.class));
        }
    } catch (Throwable e) {
        TinkerLog.i(TAG, "try to increase patch process priority error:" + e);
    }
}

假设你对“保活”这个话题比較关注,那么对这段代码一定不陌生,主要是利用系统的一个漏洞来启动一个前台Service。

假设有兴趣,能够參考此文:关于 Android 进程保活。你所须要知道的一切

以下继续回到tryPatch方法:

# UpgradePatch
@Override
public boolean tryPatch(Context context, String tempPatchPath, PatchResult patchResult) {
    Tinker manager = Tinker.with(context);

    final File patchFile = new File(tempPatchPath);

    //it is a new patch, so we should not find a exist
    SharePatchInfo oldInfo = manager.getTinkerLoadResultIfPresent().patchInfo;
    String patchMd5 = SharePatchFileUtil.getMD5(patchFile);

    //use md5 as version
    patchResult.patchVersion = patchMd5;
    SharePatchInfo newInfo;

    //already have patch
    if (oldInfo != null) {
        newInfo = new SharePatchInfo(oldInfo.oldVersion, patchMd5, Build.FINGERPRINT);
    } else {
        newInfo = new SharePatchInfo("", patchMd5, Build.FINGERPRINT);
    }

    //check ok, we can real recover a new patch
    final String patchDirectory = manager.getPatchDirectory().getAbsolutePath();
    final String patchName = SharePatchFileUtil.getPatchVersionDirectory(patchMd5);
    final String patchVersionDirectory = patchDirectory + "/" + patchName;

    //copy file
    File destPatchFile = new File(patchVersionDirectory + "/" + SharePatchFileUtil.getPatchVersionFile(patchMd5));
    // check md5 first
    if (!patchMd5.equals(SharePatchFileUtil.getMD5(destPatchFile))) {
        SharePatchFileUtil.copyFileUsingStream(patchFile, destPatchFile);
    }

    //we use destPatchFile instead of patchFile, because patchFile may be deleted during the patch process
    if (!DexDiffPatchInternal.tryRecoverDexFiles(manager, signatureCheck, context, patchVersionDirectory, 
                destPatchFile)) {
        TinkerLog.e(TAG, "UpgradePatch tryPatch:new patch recover, try patch dex failed");
        return false;
    }

    return true;
}

拷贝patch文件拷贝至私有文件夹,然后调用DexDiffPatchInternal.tryRecoverDexFiles

protected static boolean tryRecoverDexFiles(Tinker manager, ShareSecurityCheck checker, Context context,
                                                String patchVersionDirectory, File patchFile) {
    String dexMeta = checker.getMetaContentMap().get(DEX_META_FILE);
    boolean result = patchDexExtractViaDexDiff(context, patchVersionDirectory, dexMeta, patchFile);
    return result;
}

直接看patchDexExtractViaDexDiff

private static boolean patchDexExtractViaDexDiff(Context context, String patchVersionDirectory, String meta, final File patchFile) {
    String dir = patchVersionDirectory + "/" + DEX_PATH + "/";

    if (!extractDexDiffInternals(context, dir, meta, patchFile, TYPE_DEX)) {
        TinkerLog.w(TAG, "patch recover, extractDiffInternals fail");
        return false;
    }

    final Tinker manager = Tinker.with(context);

    File dexFiles = new File(dir);
    File[] files = dexFiles.listFiles();

    ...files遍历执行:DexFile.loadDex
     return true;
}

核心代码主要在extractDexDiffInternals中:

private static boolean extractDexDiffInternals(Context context, String dir, String meta, File patchFile, int type) {
    //parse meta
    ArrayList<ShareDexDiffPatchInfo> patchList = new ArrayList<>();
    ShareDexDiffPatchInfo.parseDexDiffPatchInfo(meta, patchList);

    File directory = new File(dir);
    //I think it is better to extract the raw files from apk
    Tinker manager = Tinker.with(context);
    ZipFile apk = null;
    ZipFile patch = null;

    ApplicationInfo applicationInfo = context.getApplicationInfo();

    String apkPath = applicationInfo.sourceDir; //base.apk
    apk = new ZipFile(apkPath);
    patch = new ZipFile(patchFile);

    for (ShareDexDiffPatchInfo info : patchList) {

        final String infoPath = info.path;
        String patchRealPath;
        if (infoPath.equals("")) {
            patchRealPath = info.rawName;
        } else {
            patchRealPath = info.path + "/" + info.rawName;
        }

        File extractedFile = new File(dir + info.realName);

        ZipEntry patchFileEntry = patch.getEntry(patchRealPath);
        ZipEntry rawApkFileEntry = apk.getEntry(patchRealPath);

        patchDexFile(apk, patch, rawApkFileEntry, patchFileEntry, info, extractedFile);
    }

    return true;
}

这里的代码比較关键了。能够看出首先解析了meta里面的信息,meta中包括了patch中每一个dex的相关数据。然后通过Application拿到sourceDir。事实上就是本机apk的路径以及patch文件。依据mate中的信息開始遍历,事实上就是取出相应的dex文件,最后通过patchDexFile对两个dex文件做合并。

private static void patchDexFile(
            ZipFile baseApk, ZipFile patchPkg, ZipEntry oldDexEntry, ZipEntry patchFileEntry,
            ShareDexDiffPatchInfo patchInfo,  File patchedDexFile) throws IOException {
    InputStream oldDexStream = null;
    InputStream patchFileStream = null;

    oldDexStream = new BufferedInputStream(baseApk.getInputStream(oldDexEntry));
    patchFileStream = (patchFileEntry != null ?

new BufferedInputStream(patchPkg.getInputStream(patchFileEntry)) : null); new DexPatchApplier(oldDexStream, patchFileStream).executeAndSaveTo(patchedDexFile); }

通过ZipFile拿到其内部文件的InputStream,事实上就是读取本地apk相应的dex文件。以及patch中相应dex文件,对二者的通过executeAndSaveTo方法进行合并至patchedDexFile。即patch的目标私有文件夹。

至于合并算法。这里事实上才是tinker比較核心的地方,这个算法跟dex文件格式紧密关联,假设有机会。然后我又能看懂的话,后面会单独写篇博客介绍。此外dodola已经有篇博客进行了介绍:

感兴趣的能够阅读下。

好了,到此我们就大致了解了tinker热修复的原理~~

測试demo地址:

当然这里仅仅分析了代码了热修复,兴许考虑分析资源以及So的热修、核心的diff算法、以及gradle插件等相关知识~


最后欢迎关注我的公众号~

我的微信公众号:hongyangAndroid
(能够给我留言你想学习的文章,支持投稿)

posted on 2017-08-04 15:57  blfbuaa  阅读(330)  评论(0编辑  收藏  举报