由二叉树构造赫夫曼树
赫夫曼树:
如果有n个权值{w1,w2,w3....},试构造一棵具有n个叶子节点的二叉树,每一个叶子节点带权为wi。则当中带权路径长度最小的二叉树称为最优二叉树或者叫赫夫曼树。
构造赫夫曼树:
如果有n个权值,则构造出的赫夫曼树有n个叶子节点,n个权值分别设置为w1,w2,....wn,则赫夫曼树的构造规则为:
1.将w1,w2...看成是有n棵树的森林;
2.在森林中选择两个根节点的权值最小的树合并,作为一棵新树的左右子树,且新树的根节点权值为其左右子树根节点权值之和;
3.从森林中删除选取的两棵树,并将新树增加森林。
4.反复2、3步,直到森林中仅仅剩一棵树为止。该树即为所求得的赫夫曼树。
实现:
以数组形式存储赫夫曼树节点,节点形态:
/************************************************** 构造赫夫曼树 by Rowandjj 2014/6/2 **************************************************/ #include<IOSTREAM> using namespace std; #define UINT_MAX 0xffffffff typedef struct _BITREE_//二叉树 { int data;//存放节点的圈中 struct _BITREE_ *lChild; struct _BITREE_ *rChild; }Bitree,*pBitree; typedef struct _HUFFMANTREE_//赫夫曼树 { unsigned int weight; unsigned int parent; unsigned int lChild; unsigned int rChild; }HuffmanTree,*pHuffmanTree; int iCount = 0;//叶子节点数 int iIndex = 1;//索引 //----------------------------------------- void CreateBiTree(pBitree* pBitreeTemp);//创建二叉树 void CreatreArray(pHuffmanTree& pHuffmanTreeTemp,pBitree pBitreeTemp);//将二叉树每一个节点的值作为权放进赫夫曼树中 pHuffmanTree InitHuffmanTree();//初始化赫夫曼树, void CreateHuffmanTree(pHuffmanTree& pHuffmanTreeTemp);//创建赫夫曼树 int GetNode(pHuffmanTree& pHuffmanTreeTemp,int i);//获取赫夫曼树中位置0-i中值最小的节点的索引 void SelectNode(pHuffmanTree& pHuffmanTreeTemp,int i,int *m,int *n);//选择赫夫曼树数组中值最小的两个节点的索引(不包括已有父节点的节点) void DestroyTree(pBitree* pBitreeTemp); void DestroyHuffmanTree(pHuffmanTree& pHuffmanTreeTemp); int main() { int i; //创建二叉树 pBitree pBitreeTemp; CreateBiTree(&pBitreeTemp); //初始化赫夫曼树 pHuffmanTree pHuffmanTreeTemp = InitHuffmanTree(); //初始化赫夫曼树的叶子节点的权 CreatreArray(pHuffmanTreeTemp,pBitreeTemp); for(i = 1; i <= iCount ; i++) { cout<<pHuffmanTreeTemp[i].weight<<" "; } cout<<endl; //创建赫夫曼树 CreateHuffmanTree(pHuffmanTreeTemp); for(i = 1; i <= 2*iCount-1 ; i++) { cout<<pHuffmanTreeTemp[i].weight<<" "; } cout<<endl; DestroyTree(&pBitreeTemp); DestroyHuffmanTree(pHuffmanTreeTemp); return 0; } void CreateBiTree(pBitree* pBitreeTemp) { int data; cin>>data; if(data == -1) { return; } *pBitreeTemp = (pBitree)malloc(sizeof(Bitree)); if(*pBitreeTemp == NULL) { return; } (*pBitreeTemp)->data = data; (*pBitreeTemp)->lChild = NULL; (*pBitreeTemp)->rChild = NULL; CreateBiTree(&(*pBitreeTemp)->lChild); CreateBiTree(&(*pBitreeTemp)->rChild); iCount++; } pHuffmanTree InitHuffmanTree() { int num = 2*iCount - 1;//赫夫曼树的节点总数为:叶子节点数*2-1 pHuffmanTree pTemp = (pHuffmanTree)malloc(sizeof(HuffmanTree)*(num+1));//0位不存 if(pTemp == NULL) { return NULL; } for(int i = 0; i <= num; i++) { pTemp[i].lChild = 0; pTemp[i].rChild = 0; pTemp[i].parent = 0; pTemp[i].weight = 0; } return pTemp; } void CreatreArray(pHuffmanTree& pHuffmanTreeTemp,pBitree pBitreeTemp) { if(pBitreeTemp == NULL || pHuffmanTreeTemp == NULL) { return; } pHuffmanTreeTemp[iIndex].weight = pBitreeTemp->data; iIndex++; CreatreArray(pHuffmanTreeTemp,pBitreeTemp->lChild); CreatreArray(pHuffmanTreeTemp,pBitreeTemp->rChild); } int GetNode(pHuffmanTree& pHuffmanTreeTemp,int i) { int min = UINT_MAX; int flag; for(int j = 1; j <= i; j++) { if(pHuffmanTreeTemp[j].weight < min && pHuffmanTreeTemp[j].parent == 0)//已有父节点的不算 { min = pHuffmanTreeTemp[j].weight; flag = j; } } pHuffmanTreeTemp[flag].parent = 1;//防止两次调用获取的索引同样 return flag; } void SelectNode(pHuffmanTree& pHuffmanTreeTemp,int i,int *m,int *n)//m为序号小的那个 { *m = GetNode(pHuffmanTreeTemp,i); *n = GetNode(pHuffmanTreeTemp,i); int t; if(*m > *n) { t = *m; *m = *n; *n = t; } } void CreateHuffmanTree(pHuffmanTree& pHuffmanTreeTemp) { if(pHuffmanTreeTemp == NULL) { return; } int m = 0,n = 0; for(int i = iCount+1;i <= 2*iCount-1; i++) { SelectNode(pHuffmanTreeTemp,i-1,&m,&n); pHuffmanTreeTemp[m].parent = pHuffmanTreeTemp[n].parent = i; //构造两个最小权重的节点的父节点 pHuffmanTreeTemp[i].lChild = m; pHuffmanTreeTemp[i].rChild = n; pHuffmanTreeTemp[i].weight = pHuffmanTreeTemp[m].weight+pHuffmanTreeTemp[n].weight; } } void DestroyTree(pBitree* pBitreeTemp) { if(*pBitreeTemp == NULL) { return; } if((*pBitreeTemp)->lChild) { DestroyTree(&(*pBitreeTemp)->lChild); } if((*pBitreeTemp)->rChild) { DestroyTree(&(*pBitreeTemp)->rChild); } free(*pBitreeTemp); *pBitreeTemp = NULL; } void DestroyHuffmanTree(pHuffmanTree& pHuffmanTreeTemp) { if(pHuffmanTreeTemp) { free(pHuffmanTreeTemp); } pHuffmanTreeTemp = NULL; }測试:
图解构造过程:
1.首先将二叉树中的节点所有存到代表赫夫曼树的数组中。其余位置为0:
2.循环遍历该数组。每次找到最小权重的两个节点。之和作为其父节点的权重
3.循环一遍后。便得到赫夫曼树: