HDU 2588 GCD && GCD问题总结
GCD(一)
题目:
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common
to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
求满足题目要求的x个数。
算法:
直接筛选会超时,依据题目给出的不等式特点GCD(x,N) >= M 能够知道满足题目要求的一定是N的因子并且必须大于等于M(想想为什么?解体关键)。所以,仅仅要枚举N的大于等于M的因子就能够了。
由于,在10^9内最多的因子数不超过30个。
所以,总时间是O(30*loglogn)接近常数。
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> #include <cmath> using namespace std; typedef __int64 LL; const int MOD = 1000000007; int euler_phi(int n){ int k = (int)sqrt(n + 0.5); int ans = n; for(int i = 2;i <= k;++i) if(0 == n % i){ ans = ans / i * (i - 1); while(0 == n % i) n /= i; } if(n > 1) ans = ans / n * (n - 1); return ans; } LL getFact(int n,int m){ LL res = 0; int k = sqrt(n + 0.5); int tmp; for(int i = 1;i <= k;++i){ if(0 == n % i){ tmp = n / i; if(i >= m) res += euler_phi(n / i); if(tmp >= m && i != tmp) res += euler_phi(n / tmp); } } return res; } int main() { int T,n,m; scanf("%d",&T); while(T--){ scanf("%d%d",&n,&m); if(n == 1 && m == 1){ puts("1"); continue; } printf("%I64d\n",getFact(n,m)); } return 0; }
GCD(二)
题目:
给你一个数N,使得在1~N之间可以找到x使得x满足gcd( x , N ) >= M,求解gcd(x,N)的和。
算法:
由上题的知识能够知道,1...N的互质个数为欧拉函数值且其gcd仅仅能是N的因子。
所以,对于N = x * y。
我们仅仅要
求出x在y内的互质个数就好了,结果乘以x就是gcd = x的和了.
证明:
SUM(gcd = x ) = 1*x + 2*x + 3*x ..... y*x
所以。当gcd = x的时候仅仅要求出y的欧拉函数值就好了。
而一个数的因子又能够在sqrt(N)内求出。
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> #include <cmath> using namespace std; typedef long long LL; int euler_phi(int n){ int m = sqrt(n + 0.5); int ans = n; for(int i = 2;i <= m;++i) if(0 == n % i){ ans = ans / i * (i - 1); while(0 == n % i) n /= i; } if(n > 1) ans = ans / n * (n - 1); return ans; } LL solve(int n,int m){ LL res = 0; int k = sqrt(n + 0.5); for(int i = 1;i <= k;++i){ if(0 == n % i){ if(i >= m) res += i * euler_phi(n / i); if(i != n / i && n / i >= m) res += n / i * euler_phi(i); } } return res; } int main() { int n,m; while(~scanf("%d%d",&n,&m)){ printf("%lld\n",solve(n,m)); } return 0; }
GCD(三)
题目:
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and
b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M,please answer sum of X satisfies 1<=X<=N and (X,N)>=M.
算法:
跟GCD(一)不同的是这题求得是满足gcd(x,n) >= m 。x的和。而由欧拉函数中的一个定理能够知道
所以。仅仅要SUM(n = x * y) = y*α(y) / 2 * x
由于要的是x的和。而我们是在把X先进行X / x处理的所以最后要在乘回上x得到原值。
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> #include <cmath> using namespace std; typedef long long LL; const int MOD = 1000000007; int euler_phi(int n){ int k = (int)sqrt(n + 0.5); int ans = n; for(int i = 2;i <= k;++i) if(0 == n % i){ ans = ans / i * (i - 1); while(0 == n % i) n /= i; } if(n > 1) ans = ans / n * (n - 1); return ans; } LL getFact(int n,int m){ LL res = 0; int k = sqrt(n + 0.5); LL tmp; for(int i = 1;i <= k;++i){ if(0 == n % i){ tmp = n / i; if(i >= m){ LL t1 = tmp * euler_phi(tmp) / 2 % MOD; t1 = t1 ? t1 : 1; res = (res + t1 * i) % MOD; } if(tmp >= m && i != tmp) { LL t1 = i * euler_phi(i) / 2 % MOD; t1 = t1 ?t1 : 1; res = (res + t1 * tmp) % MOD; } } } return res >= MOD ? res%MOD : res; } int main() { int T,n,m; scanf("%d",&T); while(T--){ scanf("%d%d",&n,&m); printf("%lld\n",getFact(n,m)); } return 0; }