笔试题目4
有一个数组A[1000],装着1至1000的连续整数(乱序),突然其中有一个数变成了另一个数(仍处于1至1000的范围),问如何在O(n)时间和O(1)空间内找到这个重复的数是多少。
1. 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
2.把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
3.输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。例如输入数组{32, 321},则输出这两个能排成的最小数字32132。
4.从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。2-10为数字本身,A为1,J为11,Q为12,K为13,而大小王可以看成任意数字。
5. 用递归颠倒一个栈。例如输入栈{1, 2, 3, 4, 5},1在栈顶。颠倒之后的栈为{5, 4, 3, 2, 1},5处在栈顶。
一堆砖块,排成一个N层三角形
1
2 3
4 5 6
7 8 9 10
.
.
.
每个砖块重量为 W[i],i为上面的砖块编号,现在要从中拿M块砖,
由于堆叠关系,只当某砖块上方没有其它砖块时,才能被拿起来
例如,只有先拿掉1,才能拿到2,3号,只有5,6已被拿开,才
能拿9号砖。
要求找到一个方法,使得总重量最大。
单链表可以有效的进行插入删除,但是随机定位(存取第n个元素)不够好,请设计一种改
进的链表结构进行随机定位,给出设计思路,并分析算法复杂度
约瑟夫问题
n个人围一圈,编号0到n-1。编号为0的人从1开始依次报数,报到m退出,接下去的一位
继续从1开始,问最后一个退出的人的编号。填空,应该是递归。
int last(int m, int n)
{ m=m%n;
return ______;
}
写完密码约瑟夫就想到原来看到约瑟夫问题的一个数学解法 很巧妙很简单 不过只能推出最后一个出列的人
无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。
我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0。
现在我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-2 --> n-2
k-1 --> n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:
令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]
递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i; (i>1)
有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
由于是逐级递推,不需要保存每个f[i],程序也是异常简单:
#include <stdio.h>
int main()
{
int n, m, i, s=0;
printf ("N M = "); scanf("%d%d", &n, &m);
for (i=2; i<=n; i++) s=(s+m)%i;
printf ("The winner is %d\n", s+1);
}
这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执行效率。