智能佳-Aloha机器学习系列-BiACT白皮书综述
原文链接:Machine Learning Series - BiACT Whitepaper Review - YouTube
We dive into the innovative paper "Bi-ACT: Bilateral Control-Based Imitation Learning" by Masato Kobayashi and his team at Osaka University in Japan. Building on the concept of Action Chunking Transformers (ACT), this paper introduces a new approach that incorporates both position and force information, enabling robots to adapt to various object properties like hardness and weight.
我们深入探讨了日本大阪大学小林正人及其团队的创新论文《Bi-ACT:基于双边控制的模仿学习》。该论文在动作块转换器(ACT)概念的基础上,引入了一种新方法,该方法结合了位置和力信息,使机器人能够适应各种物体属性,如硬度和重量。
We'll explore how Bi-ACT leverages joint angles, velocities, torque, and images to produce fast, robust motion generation at 100Hz. The use of bilateral control, a disturbance observer, and a Force Reaction Observer (FRO) ensures precise, real-time adjustments during operation. The paper's experiments demonstrate the system's effectiveness in handling complex tasks, including managing deformable objects and those containing liquids.
我们将探讨Bi-ACT如何利用关节角度、速度、扭矩和图像以100Hz的速度产生快速、稳健的运动。双边控制、扰动观测器和力反应观测器(FRO)的使用确保了操作过程中精确、实时的调整。论文中的实验证明了该系统在处理复杂任务(包括管理可变形物体和含有液体的物体)方面的有效性。
产品名称 |
京东店铺 |
智能佳Mobile ALOHA2 机械臂 完整套装 斯坦福ALOHA 深度学习 家政服务ROS开源实验平台 高端复合机器人 ALOHA 2机械臂 |
|
智能佳机械臂 Mobile ALOHA 斯坦福机械臂 完整复刻版 复合机器人 远程操控机械臂ROS开源学习实验平台 Mobile ALOHA 机械臂 |
https://item.jd.com/10100493559285.html |
您对此产品感兴趣,请联系我们!
智能佳机器人
400 099 1872