TreeMap(红黑树)源码分析

1. HashMap.Entry(红黑树节点)

private static final boolean RED   = false;
private static final boolean BLACK = true;
static final class Entry<K,V> implements Map.Entry<K,V> {
    K key; //
    V value; //
    Entry<K,V> left; // 左孩子
    Entry<K,V> right; // 右孩子
    Entry<K,V> parent; // 父节点
    boolean color = BLACK; // 颜色

    Entry(K key, V value, Entry<K,V> parent) {
        this.key = key;
        this.value = value;
        this.parent = parent;
    }

    ... ...
}

2. 构建TreeMap

private final Comparator<? super K> comparator; // 比较器
private transient Entry<K,V> root; // 红黑树根节点
private transient int size = 0; // 红黑树节点总数
private transient int modCount = 0; // // 调用put、remove、clear...方法时:modCount++(PrivateEntryIterator相关)

public TreeMap() { // 自然排序(key实现Comparable)
    comparator = null;
}

public TreeMap(Comparator<? super K> comparator) { // 指定比较器
    this.comparator = comparator;
}

public TreeMap(Map<? extends K, ? extends V> m) { // 用其它Map构建红黑树
    comparator = null;
    putAll(m);
}

public TreeMap(SortedMap<K, ? extends V> m) { // 用其它有序Map构建红黑树
    comparator = m.comparator();
    try {
        buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
    } catch (java.io.IOException cannotHappen) {
    } catch (ClassNotFoundException cannotHappen) {
    }
}
public void putAll(Map<? extends K, ? extends V> map) { 
    int mapSize = map.size();
    if (size==0 && mapSize!=0 && map instanceof SortedMap) { // map为有序Map
        Comparator<?> c = ((SortedMap<?,?>)map).comparator();
        if (c == comparator || (c != null && c.equals(comparator))) {
            ++modCount;
            try {
                buildFromSorted(mapSize, map.entrySet().iterator(), null, null);
            } catch (java.io.IOException cannotHappen) {
            } catch (ClassNotFoundException cannotHappen) {
            }
            return;
        }
    }
    super.putAll(map); // 依次从map中取元素添加到当前红黑树中
}

private void buildFromSorted(int size, Iterator<?> it, java.io.ObjectInputStream str, V defaultVal)
    throws java.io.IOException, ClassNotFoundException {
    this.size = size;
    root = buildFromSorted(0, 0, size-1, computeRedLevel(size), it, str, defaultVal);
}

private final Entry<K,V> buildFromSorted(int level, int lo, int hi, int redLevel, Iterator<?> it, java.io.ObjectInputStream str, V defaultVal)
    throws  java.io.IOException, ClassNotFoundException {
    if (hi < lo) return null;

    int mid = (lo + hi) >>> 1; // 中置位

    Entry<K,V> left  = null;
    if (lo < mid) // 构建左子树
        left = buildFromSorted(level+1, lo, mid - 1, redLevel, it, str, defaultVal);

    K key;
    V value;
    if (it != null) { // 从迭代器中获取元素
        if (defaultVal==null) {
            Map.Entry<?,?> entry = (Map.Entry<?,?>)it.next();
            key = (K)entry.getKey();
            value = (V)entry.getValue();
        } else {
            key = (K)it.next();
            value = defaultVal;
        }
    } else { // 从输入流中获取元素
        key = (K) str.readObject();
        value = (defaultVal != null ? defaultVal : (V) str.readObject());
    }

    Entry<K,V> middle =  new Entry<>(key, value, null); // 中置位节点

    if (level == redLevel)
        middle.color = RED;

    if (left != null) { // 存在左子树
        middle.left = left;
        left.parent = middle;
    }

    if (mid < hi) { // 构建右子树
        Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel, it, str, defaultVal);
        middle.right = right;
        right.parent = middle;
    }

    return middle;
}

private static int computeRedLevel(int sz) { // 树中节点全满的最后一层
    int level = 0;
    for (int m = sz - 1; m >= 0; m = m / 2 - 1)
        level++;
    return level;
}

3. get

在查找过程中,采用比较器或自然顺序比较节点大小:

1‘ 指定比较器时,优先使用比较器比较节点大小

2' 未指定比较器时,待查找键类型必须实现Comparable接口

public V get(Object key) {
    Entry<K,V> p = getEntry(key);
    return (p==null ? null : p.value);
}

final Entry<K,V> getEntry(Object key) {
    if (comparator != null)
        return getEntryUsingComparator(key);
    if (key == null)
        throw new NullPointerException();
    Comparable<? super K> k = (Comparable<? super K>) key;
    Entry<K,V> p = root;
    while (p != null) {
        int cmp = k.compareTo(p.key);
        if (cmp < 0) // 左拐
            p = p.left;
        else if (cmp > 0) // 右拐
            p = p.right;
        else // 找到节点
            return p;
    }
    return null;
}

final Entry<K,V> getEntryUsingComparator(Object key) {
    K k = (K) key;
    Comparator<? super K> cpr = comparator;
    if (cpr != null) {
        Entry<K,V> p = root;
        while (p != null) {
            int cmp = cpr.compare(k, p.key);
            if (cmp < 0) // 左拐
                p = p.left;
            else if (cmp > 0) // 右拐
                p = p.right;
            else // 找到节点
                return p;
        }
    }
    return null;
}

4. ceilingEntry和floorEntry

final int compare(Object k1, Object k2) { // 优先用comparator比较节点大小
    return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2) : comparator.compare((K)k1, (K)k2);
}

public Map.Entry<K,V> ceilingEntry(K key) {
    return exportEntry(getCeilingEntry(key));
}
final Entry<K,V> getCeilingEntry(K key) {
    Entry<K,V> p = root;
    while (p != null) {
        int cmp = compare(key, p.key);
if (cmp < 0) {
            if (p.left != null) // 左子树存在则左拐
                p = p.left;
            else // 左子树不存在则当前节点为ceiling
                return p;
        } else if (cmp > 0) {
            if (p.right != null) { // 右子树存在则右拐
                p = p.right;
            } else { // 右子树不存在,则从当前节点往根节点走,寻找首个比当前节点大的节点(可能不存在)
                Entry<K,V> parent = p.parent;
                Entry<K,V> ch = p;
                while (parent != null && ch == parent.right) {
                    ch = parent;
                    parent = parent.parent;
                }
                return parent;
            }
        } else // key相等的节点为ceiling
            return p;
    }
    return null;
}

public Map.Entry<K,V> floorEntry(K key) {
    return exportEntry(getFloorEntry(key));
}

final Entry<K,V> getFloorEntry(K key) {
    Entry<K,V> p = root;
    while (p != null) {
        int cmp = compare(key, p.key);
        if (cmp > 0) {
            if (p.right != null) // 右子树存在则右拐
                p = p.right;
            else // 右子树不存在则当前节点为floor
                return p;
        } else if (cmp < 0) {
            if (p.left != null) { // 左子树存在则左拐
                p = p.left;
            } else { // 左子树不存在,则从当前节点往根节点走,寻找首个比当前节点小的节点(可能不存在)
                Entry<K,V> parent = p.parent;
                Entry<K,V> ch = p;
                while (parent != null && ch == parent.left) {
                    ch = parent;
                    parent = parent.parent;
                }
                return parent;
            }
        } else // key相等的节点为floor
            return p;

    }
    return null; // 红黑树中不存在<=key的节点
}
static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
    return (e == null) ? null : new AbstractMap.SimpleImmutableEntry<>(e);
}

5. containsKey和containsValue

containsKey:getEntry返回非空

containsValue:从第一个节点开始,遍历整颗红黑树

public boolean containsKey(Object key) {
    return getEntry(key) != null;
}

public boolean containsValue(Object value) {
    for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
        if (valEquals(value, e.value))
            return true;
    return false;
}

public Map.Entry<K,V> firstEntry() { // 最小节点
    return exportEntry(getFirstEntry());
}

final Entry<K,V> getFirstEntry() {
    Entry<K,V> p = root;
    if (p != null)
        while (p.left != null) // 一路左拐
            p = p.left;
    return p;
}

static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) { // 节点t的后置节点 if (t == null) return null; else if (t.right != null) { // 右子树存在,则一步右拐再一路左拐 Entry<K,V> p = t.right; while (p.left != null) p = p.left; return p; } else { // 右子树不存在,则从当前节点往根节点走,寻找首个比当前节点大的节点(可能不存在) Entry<K,V> p = t.parent; Entry<K,V> ch = t; while (p != null && ch == p.right) { ch = p; p = p.parent; } return p; } }

6. put

1' 若已存在相同键的节点,则设置节点新值

2' 若不存在相同键的节点,则插入(黑色)节点,再以该节点为支点进行平衡调整

public V put(K key, V value) {
    Entry<K,V> t = root;
    if (t == null) { // 红黑树为空
        compare(key, key); // 可能comparator为空,且key所属类也未实现Comparable接口
        root = new Entry<>(key, value, null);
        size = 1;
        modCount++;
        return null;
    }
    int cmp;
    Entry<K,V> parent;
    Comparator<? super K> cpr = comparator;
    if (cpr != null) { // comparator不为空
        do {
            parent = t;
            cmp = cpr.compare(key, t.key);
            if (cmp < 0) // 左拐
                t = t.left;
            else if (cmp > 0) // 右拐
                t = t.right;
            else // 存在key相等的节点
                return t.setValue(value);
        } while (t != null);
    }
    else { // comparator为空
        if (key == null)
            throw new NullPointerException();
        Comparable<? super K> k = (Comparable<? super K>) key;
        do {
            parent = t;
            cmp = k.compareTo(t.key);
            if (cmp < 0) // 左拐
                t = t.left;
            else if (cmp > 0) // 右拐
                t = t.right;
            else // 存在key相等的节点
                return t.setValue(value);
        } while (t != null);
    }
    Entry<K,V> e = new Entry<>(key, value, parent);
    if (cmp < 0)
        parent.left = e;
    else
        parent.right = e;
    fixAfterInsertion(e); // 插入新节点后做平衡调整
    size++;
    modCount++;
    return null;
}

private void fixAfterInsertion(Entry<K,V> x) {
    x.color = RED;
    // x不为空 && x不为根节点 && x父节点为红色
    while (x != null && x != root && x.parent.color == RED) { // 当前节点x
        if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { // x父节点是x爷爷节点的左孩子
            Entry<K,V> y = rightOf(parentOf(parentOf(x))); // x叔叔节点(可能不存在)
            if (colorOf(y) == RED) { // x叔叔节点为红色
                setColor(parentOf(x), BLACK);
                setColor(y, BLACK);
                setColor(parentOf(parentOf(x)), RED);
                x = parentOf(parentOf(x)); // x爷爷节点作为当前节点:continue
            } else { // x叔叔节点为黑色
                if (x == rightOf(parentOf(x))) { // x是父节点的右孩子
                    x = parentOf(x);
                    rotateLeft(x);
                }
                // 此时,x是父节点的左孩子
                setColor(parentOf(x), BLACK);
                setColor(parentOf(parentOf(x)), RED);
                rotateRight(parentOf(parentOf(x)));
            }
        } else { // x父节点是x爷爷节点的右孩子 || x爷爷节点不存在
            Entry<K,V> y = leftOf(parentOf(parentOf(x))); // x叔叔节点(可能不存在)
            if (colorOf(y) == RED) { // x叔叔节点为红色
                setColor(parentOf(x), BLACK);
                setColor(y, BLACK);
                setColor(parentOf(parentOf(x)), RED);
                x = parentOf(parentOf(x)); // x爷爷节点作为当前节点:continue
            } else { // x叔叔节点为黑色
                if (x == leftOf(parentOf(x))) { // x是父节点的左孩子
                    x = parentOf(x);
                    rotateRight(x);
                }
                // 此时,x是父节点的右孩子
                setColor(parentOf(x), BLACK);
                setColor(parentOf(parentOf(x)), RED);
                rotateLeft(parentOf(parentOf(x)));
            }
        }
    }
    root.color = BLACK; // 根节点置为黑色
}

private static <K,V> boolean colorOf(Entry<K,V> p) { // 不存在的节点(如叶子节点)为黑色
    return (p == null ? BLACK : p.color);
}

private static <K,V> void setColor(Entry<K,V> p, boolean c) { // p不存在:noop
    if (p != null)
        p.color = c;
}

private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) { // p不存在则p父节点也不存在
    return (p == null ? null: p.parent);
}

private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) { // p不存在则p左孩子也不存在
    return (p == null) ? null: p.left;
}

private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) { // p不存在则p右孩子也不存在
    return (p == null) ? null: p.right;
}

private void rotateLeft(Entry<K,V> p) { // 以p为支点左旋
    if (p != null) {
        Entry<K,V> r = p.right; // p右孩子(必须存在)
        // 1. r左孩子 -> p右孩子
        p.right = r.left;
        if (r.left != null) r.left.parent = p;

        r.parent = p.parent;
        if (p.parent == null)
            root = r; // 2. r -> 根节点
        else if (p.parent.left == p)
            p.parent.left = r; // 2. r -> p父节点的左孩子
        else
            p.parent.right = r; // 2. r -> p父节点的右孩子
        // 3. p -> r的左孩子
        r.left = p;
        p.parent = r;
    }
}

private void rotateRight(Entry<K,V> p) { // 以p为支点右旋
    if (p != null) {
        Entry<K,V> l = p.left; // p左孩子(必须存在)
        // 1. l右孩子 -> p左孩子
        p.left = l.right;
        if (l.right != null) l.right.parent = p;
        
        l.parent = p.parent;
        if (p.parent == null)
            root = l; // 2. l -> 根节点
        else if (p.parent.right == p)
            p.parent.right = l; // 2. l -> p父节点的右孩子
        else
            p.parent.left = l; // 2. l -> p父节点的左孩子
        // 3. p -> r的右孩子
        l.right = p;
        p.parent = l;
    }
}

7. remove

1' 若未找到待删除节点,则直接返回

2' 若待删除节点左右子树非空,则将successor的键值保存到待删除节点,待删除节点 = successor

3' 若待删除节点左右子树皆空

  1'' 待删除节点为黑色,以该节点为支点进行平衡调整,再删除该节点

  2’‘ 待删除节点为红色,直接删除该节点

4' 若待删除节点左右子树非皆空

  1'' 待删除节点为黑色,则删除该节点,再以该节点左(右)孩子为支点进行平衡调整

  2'' 待删除节点为红色,直接删除该节点

public V remove(Object key) {
    Entry<K,V> p = getEntry(key); // 寻找节点
    if (p == null)
        return null;
    V oldValue = p.value;
    deleteEntry(p);
    return oldValue;
}

private void deleteEntry(Entry<K,V> p) {
    modCount++;
    size--;

    if (p.left != null && p.right != null) { // p左右子树非空
        Entry<K,V> s = successor(p);
        p.key = s.key;
        p.value = s.value;
        p = s;
    }
    Entry<K,V> replacement = (p.left != null ? p.left : p.right); // p的左(右)孩子
    if (replacement != null) { // p存在左(右)孩子,删除p后进行平衡调整
        replacement.parent = p.parent;
        if (p.parent == null)
            root = replacement;
        else if (p == p.parent.left)
            p.parent.left  = replacement;
        else
            p.parent.right = replacement;
        p.left = p.right = p.parent = null;

        if (p.color == BLACK)
            fixAfterDeletion(replacement);
    } else if (p.parent == null) { // p为红黑树唯一节点
        root = null;
    } else { // p没有孩子节点,平衡调整完后再删除p
        if (p.color == BLACK)
            fixAfterDeletion(p);
        if (p.parent != null) {
            if (p == p.parent.left)
                p.parent.left = null;
            else if (p == p.parent.right)
                p.parent.right = null;
            p.parent = null;
        }
    }
}

private void fixAfterDeletion(Entry<K,V> x) {
    // x不为根节点 && x为黑色
    while (x != root && colorOf(x) == BLACK) { // 当前节点x
        if (x == leftOf(parentOf(x))) { // x是x父节点的左孩子
            Entry<K,V> sib = rightOf(parentOf(x)); // x兄弟节点(可能不存在)
            if (colorOf(sib) == RED) { // x兄弟节点为红色
                setColor(sib, BLACK);
                setColor(parentOf(x), RED);
                rotateLeft(parentOf(x));
                sib = rightOf(parentOf(x));
            }
            // 此时,x兄弟节点为黑色
            // x兄弟节点:左孩子黑色,右孩子黑色
            if (colorOf(leftOf(sib))  == BLACK && colorOf(rightOf(sib)) == BLACK) {
                setColor(sib, RED);
                x = parentOf(x); // x父节点作为当前节点:continue
            } else {
                // x兄弟节点:左孩子红色,右孩子黑色
                if (colorOf(rightOf(sib)) == BLACK) {
                    setColor(leftOf(sib), BLACK);
                    setColor(sib, RED);
                    rotateRight(sib);
                    sib = rightOf(parentOf(x));
                }
                // 此时,x兄弟节点为黑色,x兄弟节点的右孩子为红色
                setColor(sib, colorOf(parentOf(x)));
                setColor(parentOf(x), BLACK);
                setColor(rightOf(sib), BLACK);
                rotateLeft(parentOf(x));
                x = root;
            }
        } else { // x是x父节点的右孩子
            Entry<K,V> sib = leftOf(parentOf(x)); // x兄弟节点(可能不存在)
            if (colorOf(sib) == RED) { // x兄弟节点为红色
                setColor(sib, BLACK);
                setColor(parentOf(x), RED);
                rotateRight(parentOf(x));
                sib = leftOf(parentOf(x));
            }
            // 此时,x兄弟节点为黑色
            // x兄弟节点:左孩子黑色,右孩子黑色
            if (colorOf(rightOf(sib)) == BLACK && colorOf(leftOf(sib)) == BLACK) {
                setColor(sib, RED);
                x = parentOf(x); // x父节点作为当前节点:continue
            } else {
                // x兄弟节点:左孩子黑色,右孩子红色
                if (colorOf(leftOf(sib)) == BLACK) {
                    setColor(rightOf(sib), BLACK);
                    setColor(sib, RED);
                    rotateLeft(sib);
                    sib = leftOf(parentOf(x));
                }
                // 此时,x兄弟节点为黑色,x兄弟节点的左孩子为红色
                setColor(sib, colorOf(parentOf(x)));
                setColor(parentOf(x), BLACK);
                setColor(leftOf(sib), BLACK);
                rotateRight(parentOf(x));
                x = root;
            }
        }
    }
    setColor(x, BLACK);
}

8. entrySet、keySet和values

依次返回EntrySet、KeySet、Values

1' EntrySet、KeySet继承自AbstractSet,而Values继承自AbstractCollection

2' EntrySet、KeySet、Values对应的迭代器分别为:EntryIterator、KeyIterator、ValueIterator

3' EntryIterator、KeyIterator、ValueIterator均继承自PrivateEntryIterator,依赖PrivateEntryIterator.nextEntry分别对Entry、K、V进行迭代

4' 对EntrySet、KeySet、Values,及各自迭代器,调用remove方法,都将最终调用TreeMap的deleteEntry方法删除节点

5' 对EntrySet、KeySet、Values,不能调用add方法添加元素,否则将抛出UnsupportedOperationException

private transient EntrySet entrySet;
private transient KeySet<K> navigableKeySet;

public Set<Map.Entry<K,V>> entrySet() {
    EntrySet es = entrySet;
    return (es != null) ? es : (entrySet = new EntrySet());
}

public Set<K> keySet() {
    return navigableKeySet();
}

public NavigableSet<K> navigableKeySet() {
    KeySet<K> nks = navigableKeySet;
    return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this));
}

Iterator<K> keyIterator() {
    return new KeyIterator(getFirstEntry());
}

public Collection<V> values() {
    Collection<V> vs = values;
    return (vs != null) ? vs : (values = new Values());
}


class EntrySet extends AbstractSet<Map.Entry<K,V>> {
    public Iterator<Map.Entry<K,V>> iterator() {
        return new EntryIterator(getFirstEntry());
    }

    public boolean contains(Object o); // TreeMap.this.getEntry
    public boolean remove(Object o); // TreeMap.this.deleteEntry
// add方法继承自AbstractCollection:throw UnsupportedOperationException
    ... ...
}

static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
    private final NavigableMap<E, ?> m;
    KeySet(NavigableMap<E,?> map) { m = map; }

    public Iterator<E> iterator() {
        if (m instanceof TreeMap)
            return ((TreeMap<E,?>)m).keyIterator();
        else
            return ((TreeMap.NavigableSubMap<E,?>)m).keyIterator();
    }

    public boolean contains(Object o); // TreeMap.this.containsKey
    public boolean remove(Object o); // TreeMap.this.remove
    // add方法继承自AbstractCollection:throw UnsupportedOperationException
}

class Values extends AbstractCollection<V> {
    public Iterator<V> iterator() {
        return new ValueIterator(getFirstEntry());
    }

    public boolean contains(Object o); // TreeMap.this.containsValue
    public boolean remove(Object o); // TreeMap.this.deleteEntry
    // add方法继承自AbstractCollection:throw UnsupportedOperationException
    ... ...
}
abstract class PrivateEntryIterator<T> implements Iterator<T> {
    Entry<K,V> next; // 下一节点
    Entry<K,V> lastReturned; // 当前节点
    int expectedModCount;

    PrivateEntryIterator(Entry<K,V> first) {
        expectedModCount = modCount;
        lastReturned = null;
        next = first;
    }

    public final boolean hasNext(); // next != null
    final Entry<K,V> nextEntry(); // TreeMap.this.successor
    final Entry<K,V> prevEntry(); // TreeMap.this.predecessor
    public void remove(); // TreeMap.this.deleteEntry
}

final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
    EntryIterator(Entry<K,V> first) { super(first); }
    public Map.Entry<K,V> next() { return nextEntry(); }
}

final class ValueIterator extends PrivateEntryIterator<V> {
    ValueIterator(Entry<K,V> first) { super(first); }
    public V next() { return nextEntry().value; }
}

final class KeyIterator extends PrivateEntryIterator<K> {
    KeyIterator(Entry<K,V> first) { super(first); }
    public K next() { return nextEntry().key; }
}

9. tailMap

1’ tailMap是一个设置低位键(包括低位边界),而未设置高位键的NavigableSubMap

2' 在>=低位键的范围内,可以对tailMap进行get、put、remove等操作

public SortedMap<K,V> tailMap(K fromKey) {
    return tailMap(fromKey, true);
}

public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
    return new AscendingSubMap<>(this,
                                 false, fromKey, inclusive, // 设置低位键
                                 true,  null,    true); // 未设置高位键
}

static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
    AscendingSubMap(TreeMap<K,V> m, boolean fromStart, K lo, boolean loInclusive, boolean toEnd, K hi, boolean hiInclusive) {
        super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
    }

    ... ...
}

abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V> implements NavigableMap<K,V>, java.io.Serializable {
    final TreeMap<K,V> m;
    final K lo, hi; // 高低键
    final boolean fromStart, toEnd; // 是否设置高低键
    final boolean loInclusive, hiInclusive; // 是否包含高低边界

    NavigableSubMap(TreeMap<K,V> m,
                    boolean fromStart, K lo, boolean loInclusive,
                    boolean toEnd,     K hi, boolean hiInclusive) {
        if (!fromStart && !toEnd) {
            if (m.compare(lo, hi) > 0)
                throw new IllegalArgumentException("fromKey > toKey");
        } else {
            if (!fromStart) // type check
                m.compare(lo, lo);
            if (!toEnd)
                m.compare(hi, hi);
        }
        this.m = m;
        this.fromStart = fromStart;
        this.lo = lo;
        this.loInclusive = loInclusive;
        this.toEnd = toEnd;
        this.hi = hi;
        this.hiInclusive = hiInclusive;
    }

    final boolean tooLow(Object key) {
        if (!fromStart) { // 设置了低位键
            int c = m.compare(key, lo);
            if (c < 0 || (c == 0 && !loInclusive))
                return true;
        }
        return false;
    }

    final boolean tooHigh(Object key) {
        if (!toEnd) { // 设置了高位键
            int c = m.compare(key, hi);
            if (c > 0 || (c == 0 && !hiInclusive))
                return true;
        }
        return false;
    }

    final boolean inRange(Object key) {
        return !tooLow(key) && !tooHigh(key); // 在高低键范围内
    }

    public final V put(K key, V value) {
        if (!inRange(key)) // 范围检查
            throw new IllegalArgumentException("key out of range");
        return m.put(key, value);
    }

    public final V get(Object key) {
        return !inRange(key)/*范围检查*/ ? null :  m.get(key);
    }

    public final V remove(Object key) {
        return !inRange(key)/*范围检查*/ ? null : m.remove(key);
    }

    ... ...
}
posted @ 2017-12-19 19:08  Uncle_Bjorney  阅读(561)  评论(0编辑  收藏  举报