011-elasticsearch5.4.3【四】-聚合操作【二】-桶聚合【bucket】过滤、嵌套、反转、分组、排序、范围

一、概述

  bucketing(桶)聚合:划分不同的“桶”,将数据分配到不同的“桶”里。非常类似sql中的group语句的含义。

  metric既可以作用在整个数据集上,也可以作为bucketing的子聚合作用在每一个“桶”中的数据集上。当然,我们可以把整个数据集合看做一个大“桶”,所有的数据都分配到这个大“桶”中。

1.1、Global聚合

AggregationBuilders
    .global("agg")
    .subAggregation(AggregationBuilders.terms("genders").field("gender"));

使用

import org.elasticsearch.search.aggregations.bucket.global.Global;
// sr is here your SearchResponse object
Global agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count

1.2、过滤聚合

AggregationBuilders
    .filter("agg", QueryBuilders.termQuery("gender", "male"));

使用

import org.elasticsearch.search.aggregations.bucket.filter.Filter;
// sr is here your SearchResponse object
Filter agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count

1.3、多过滤聚合【类似分组聚合,只是筛选出关注的】

AggregationBuilder aggregation =
    AggregationBuilders
        .filters("agg",
            new FiltersAggregator.KeyedFilter("men", QueryBuilders.termQuery("gender", "male")),
            new FiltersAggregator.KeyedFilter("women", QueryBuilders.termQuery("gender", "female")));

使用

import org.elasticsearch.search.aggregations.bucket.filters.Filters;
// sr is here your SearchResponse object
Filters agg = sr.getAggregations().get("agg");

// For each entry
for (Filters.Bucket entry : agg.getBuckets()) {
    String key = entry.getKeyAsString();            // bucket key
    long docCount = entry.getDocCount();            // Doc count
    logger.info("key [{}], doc_count [{}]", key, docCount);
}

结果

key [men], doc_count [4982]
key [women], doc_count [5018]

1.4、MIssing 聚合

AggregationBuilders.missing("agg").field("gender");

使用

import org.elasticsearch.search.aggregations.bucket.missing.Missing;
// sr is here your SearchResponse object
Missing agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count

1.5、嵌套

AggregationBuilders.nested("agg", "resellers");

使用

import org.elasticsearch.search.aggregations.bucket.nested.Nested;
// sr is here your SearchResponse object
Nested agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count

1.6、反转嵌套

AggregationBuilder aggregation =
    AggregationBuilders
        .nested("agg", "resellers")
        .subAggregation(
                AggregationBuilders
                        .terms("name").field("resellers.name")
                        .subAggregation(
                                AggregationBuilders
                                        .reverseNested("reseller_to_product")
                        )
        );

使用

import org.elasticsearch.search.aggregations.bucket.nested.Nested;
import org.elasticsearch.search.aggregations.bucket.nested.ReverseNested;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
// sr is here your SearchResponse object
Nested agg = sr.getAggregations().get("agg");
Terms name = agg.getAggregations().get("name");
for (Terms.Bucket bucket : name.getBuckets()) {
    ReverseNested resellerToProduct = bucket.getAggregations().get("reseller_to_product");
    resellerToProduct.getDocCount(); // Doc count
}

1.7、子聚合

AggregationBuilder aggregation = AggregationBuilders.children("agg", "reseller");

使用

import org.elasticsearch.search.aggregations.bucket.children.Children;
// sr is here your SearchResponse object
Children agg = sr.getAggregations().get("agg");
agg.getDocCount(); // Doc count

1.8、Terms 聚合【按某个字段分组】

AggregationBuilders.terms("genders").field("gender");

使用

import org.elasticsearch.search.aggregations.bucket.terms.Terms;
// sr is here your SearchResponse object
Terms genders = sr.getAggregations().get("genders");

// For each entry
for (Terms.Bucket entry : genders.getBuckets()) {
    entry.getKey();      // Term
    entry.getDocCount(); // Doc count
}

1.9、排序【Order】

通过doc_count以递增方式对存储桶进行排序:

AggregationBuilders
    .terms("genders")
    .field("gender")
    .order(Terms.Order.count(true))

按字母顺序按顺序升序方式排序存储桶:

AggregationBuilders
    .terms("genders")
    .field("gender")
    .order(Terms.Order.term(true))

通过单值度量子聚合(由聚合名称标识)对存储桶进行排序:

AggregationBuilders
    .terms("genders")
    .field("gender")
    .order(Terms.Order.aggregation("avg_height", false))
    .subAggregation(
        AggregationBuilders.avg("avg_height").field("height")
    )

1.10、范围聚合

AggregationBuilder aggregation =
        AggregationBuilders
                .range("agg")
                .field("height")
                .addUnboundedTo(1.0f)               // from -infinity to 1.0 (excluded)
                .addRange(1.0f, 1.5f)               // from 1.0 to 1.5 (excluded)
                .addUnboundedFrom(1.5f);            // from 1.5 to +infinity

使用

import org.elasticsearch.search.aggregations.bucket.range.Range;
// sr is here your SearchResponse object
Range agg = sr.getAggregations().get("agg");

// For each entry
for (Range.Bucket entry : agg.getBuckets()) {
    String key = entry.getKeyAsString();             // Range as key
    Number from = (Number) entry.getFrom();          // Bucket from
    Number to = (Number) entry.getTo();              // Bucket to
    long docCount = entry.getDocCount();    // Doc count

    logger.info("key [{}], from [{}], to [{}], doc_count [{}]", key, from, to, docCount);
}

结果

key [*-1.0], from [-Infinity], to [1.0], doc_count [9]
key [1.0-1.5], from [1.0], to [1.5], doc_count [21]
key [1.5-*], from [1.5], to [Infinity], doc_count [20]

1.11、日期范围聚合

AggregationBuilder aggregation =
        AggregationBuilders
                .dateRange("agg")
                .field("dateOfBirth")
                .format("yyyy")
                .addUnboundedTo("1950")    // from -infinity to 1950 (excluded)
                .addRange("1950", "1960")  // from 1950 to 1960 (excluded)
                .addUnboundedFrom("1960"); // from 1960 to +infinity

使用

import org.elasticsearch.search.aggregations.bucket.range.Range;
// sr is here your SearchResponse object
Range agg = sr.getAggregations().get("agg");

// For each entry
for (Range.Bucket entry : agg.getBuckets()) {
    String key = entry.getKeyAsString();                // Date range as key
    DateTime fromAsDate = (DateTime) entry.getFrom();   // Date bucket from as a Date
    DateTime toAsDate = (DateTime) entry.getTo();       // Date bucket to as a Date
    long docCount = entry.getDocCount();                // Doc count

    logger.info("key [{}], from [{}], to [{}], doc_count [{}]", key, fromAsDate, toAsDate, docCount);
}

结果

key [*-1950], from [null], to [1950-01-01T00:00:00.000Z], doc_count [8]
key [1950-1960], from [1950-01-01T00:00:00.000Z], to [1960-01-01T00:00:00.000Z], doc_count [5]
key [1960-*], from [1960-01-01T00:00:00.000Z], to [null], doc_count [37]

 

更多,如significantTerms、IP范围聚合、直方图聚合、日期直方图聚合、GEO距离聚合等地址

 

posted @ 2018-03-06 14:18  bjlhx15  阅读(1382)  评论(0编辑  收藏  举报
Copyright ©2011~2020 JD-李宏旭