常用模块
模块定义:
一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。
但其实import加载的模块分为四个通用类别:
1 使用python编写的代码(.py文件)
2 已被编译为共享库或DLL的C或C++扩展
3 包好一组模块的包
4 使用C编写并链接到python解释器的内置模块
模块使用:
如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。
随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用
模块的导入和使用:
模块的导入在程序的起始位置,使用import关键字
import 模块名
常用模块--collections模块
在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。
1.namedtuple: 生成可以使用名字来访问元素内容的tuple
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典
namedtuple
我们知道tuple
可以表示不变集合,例如,一个点的二维坐标就可以表示成:p=(1,2)
但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
这时,namedtuple
就派上了用场:
>>> from collections import namedtuple >>> Point = namedtuple('Point', ['x', 'y']) >>> p = Point(1, 2) >>> p.x 1 >>> p.y 2
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple
定义:
#namedtuple('名称', [属性list]): Circle = namedtuple('Circle', ['x', 'y', 'r'])
deque
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
>>> from collections import deque >>> q = deque(['a', 'b', 'c']) >>> q.append('x') >>> q.appendleft('y') >>> q deque(['y', 'a', 'b', 'c', 'x'])
deque除了实现list的append()
和pop()
外,还支持appendleft()
和popleft()
,这样就可以非常高效地往头部添加或删除元素。
OrderedDict
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict
:
>>> from collections import OrderedDict >>> d = dict([('a', 1), ('b', 2), ('c', 3)]) >>> d # dict的Key是无序的 {'a': 1, 'c': 3, 'b': 2} >>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) >>> od # OrderedDict的Key是有序的 OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict
的Key会按照插入的顺序排列,不是Key本身排序:
>>> od = OrderedDict() >>> od['z'] = 1 >>> od['y'] = 2 >>> od['x'] = 3 >>> od.keys() # 按照插入的Key的顺序返回 ['z', 'y', 'x']
defaultdict
有如下值集合 [
11
,
22
,
33
,
44
,
55
,
66
,
77
,
88
,
99
,
90.
..],将所有大于
66
的值保存至字典的第一个key中,将小于
66
的值保存至第二个key的值中。
即: {
'k1'
: 大于
66
,
'k2'
: 小于
66
}
values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = {} for value in values: if value>66: if my_dict.has_key('k1'): my_dict['k1'].append(value) else: my_dict['k1'] = [value] else: if my_dict.has_key('k2'): my_dict['k2'].append(value) else: my_dict['k2'] = [value]
from collections import defaultdict values = [11, 22, 33,44,55,66,77,88,99,90] my_dict = defaultdict(list) for value in values: if value>66: my_dict['k1'].append(value) else: my_dict['k2'].append(value)
使用dict
时,如果引用的Key不存在,就会抛出KeyError
。如果希望key不存在时,返回一个默认值,就可以用defaultdict
:
>>> from collections import defaultdict >>> dd = defaultdict(lambda: 'N/A') >>> dd['key1'] = 'abc' >>> dd['key1'] # key1存在 'abc' >>> dd['key2'] # key2不存在,返回默认值 'N/A'
Counter
Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。
c = Counter('abcdeabcdabcaba') print c 输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
其他详细内容 http://www.cnblogs.com/Eva-J/articles/7291842.html
常用模块--时间模块
和时间有关系的我们就要用到时间模块。在使用模块之前,应该首先导入这个模块
#常用方法 1.time.sleep(secs) (线程)推迟指定的时间运行。单位为秒。 2.time.time() 获取当前时间戳
表示时间的三种方式
在Python中,通常有这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串:
(1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
(2)格式化的时间字符串(Format String): ‘1999-12-06’
%y 两位数的年份表示(00-99) %Y 四位数的年份表示(000-9999) %m 月份(01-12) %d 月内中的一天(0-31) %H 24小时制小时数(0-23) %I 12小时制小时数(01-12) %M 分钟数(00=59) %S 秒(00-59) %a 本地简化星期名称 %A 本地完整星期名称 %b 本地简化的月份名称 %B 本地完整的月份名称 %c 本地相应的日期表示和时间表示 %j 年内的一天(001-366) %p 本地A.M.或P.M.的等价符 %U 一年中的星期数(00-53)星期天为星期的开始 %w 星期(0-6),星期天为星期的开始 %W 一年中的星期数(00-53)星期一为星期的开始 %x 本地相应的日期表示 %X 本地相应的时间表示 %Z 当前时区的名称 %% %号本身
(3)元组(struct_time) :struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)
索引(Index) | 属性(Attribute) | 值(Values) |
---|---|---|
0 | tm_year(年) | 比如2011 |
1 | tm_mon(月) | 1 - 12 |
2 | tm_mday(日) | 1 - 31 |
3 | tm_hour(时) | 0 - 23 |
4 | tm_min(分) | 0 - 59 |
5 | tm_sec(秒) | 0 - 60 |
6 | tm_wday(weekday) | 0 - 6(0表示周一) |
7 | tm_yday(一年中的第几天) | 1 - 366 |
8 | tm_isdst(是否是夏令时) | 默认为0 |
首先,我们先导入time模块,来认识一下python中表示时间的几种格式:
#导入时间模块 >>>import time #时间戳 >>>time.time() 1500875844.800804 #时间字符串 >>>time.strftime("%Y-%m-%d %X") '2017-07-24 13:54:37' >>>time.strftime("%Y-%m-%d %H-%M-%S") '2017-07-24 13-55-04' #时间元组:localtime将一个时间戳转换为当前时区的struct_time time.localtime() time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=13, tm_min=59, tm_sec=37, tm_wday=0, tm_yday=205, tm_isdst=0)
小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的
几种格式之间的转换
#时间戳-->结构化时间 #time.gmtime(时间戳) #UTC时间,与英国伦敦当地时间一致 #time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 >>>time.gmtime(1500000000) time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) >>>time.localtime(1500000000) time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) #结构化时间-->时间戳 #time.mktime(结构化时间) >>>time_tuple = time.localtime(1500000000) >>>time.mktime(time_tuple) 1500000000.0
#结构化时间-->字符串时间 #time.strftime("格式定义","结构化时间") 结构化时间参数若不传,则现实当前时间 >>>time.strftime("%Y-%m-%d %X") '2017-07-24 14:55:36' >>>time.strftime("%Y-%m-%d",time.localtime(1500000000)) '2017-07-14' #字符串时间-->结构化时间 #time.strptime(时间字符串,字符串对应格式) >>>time.strptime("2017-03-16","%Y-%m-%d") time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1) >>>time.strptime("07/24/2017","%m/%d/%Y") time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)
#结构化时间 --> %a %b %d %H:%M:%S %Y串 #time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串 >>>time.asctime(time.localtime(1500000000)) 'Fri Jul 14 10:40:00 2017' >>>time.asctime() 'Mon Jul 24 15:18:33 2017' #时间戳 --> %a %d %d %H:%M:%S %Y串 #time.ctime(时间戳) 如果不传参数,直接返回当前时间的格式化串 >>>time.ctime() 'Mon Jul 24 15:19:07 2017' >>>time.ctime(1500000000)
import time true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S')) time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S')) dif_time=time_now-true_time struct_time=time.gmtime(dif_time) print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1, struct_time.tm_mday-1,struct_time.tm_hour, struct_time.tm_min,struct_time.tm_sec))
常用模块--random模块
>>> import random #随机小数 >>> random.random() # 大于0且小于1之间的小数 0.7664338663654585 >>> random.uniform(1,3) #大于1小于3的小数 1.6270147180533838 #恒富:发红包 #随机整数 >>> random.randint(1,5) # 大于等于1且小于等于5之间的整数 >>> random.randrange(1,10,2) # 大于等于1且小于10之间的奇数 #随机选择一个返回 >>> random.choice([1,'23',[4,5]]) # #1或者23或者[4,5] #随机选择多个返回,返回的个数为函数的第二个参数 >>> random.sample([1,'23',[4,5]],2) # #列表元素任意2个组合 [[4, 5], '23'] #打乱列表顺序 >>> item=[1,3,5,7,9] >>> random.shuffle(item) # 打乱次序 >>> item [5, 1, 3, 7, 9] >>> random.shuffle(item) >>> item [5, 9, 7, 1, 3]
import random def v_code(): code = '' for i in range(5): num=random.randint(0,9) alf=chr(random.randint(65,90)) add=random.choice([num,alf]) code="".join([code,str(add)]) return code print(v_code())
常用模块--os模块
os模块是与操作系统交互的一个接口
''' os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir("dirname") 改变当前脚本工作目录;相当于shell下cd os.curdir 返回当前目录: ('.') os.pardir 获取当前目录的父目录字符串名:('..') os.makedirs('dirname1/dirname2') 可生成多层递归目录 os.removedirs('dirname1') 若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推 os.mkdir('dirname') 生成单级目录;相当于shell中mkdir dirname os.rmdir('dirname') 删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname os.listdir('dirname') 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印 os.remove() 删除一个文件 os.rename("oldname","newname") 重命名文件/目录 os.stat('path/filename') 获取文件/目录信息 os.sep 输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/" os.linesep 输出当前平台使用的行终止符,win下为"\t\n",Linux下为"\n" os.pathsep 输出用于分割文件路径的字符串 win下为;,Linux下为: os.name 输出字符串指示当前使用平台。win->'nt'; Linux->'posix' os.system("bash command") 运行shell命令,直接显示 os.popen("bash command).read() 运行shell命令,获取执行结果 os.environ 获取系统环境变量 os.path os.path.abspath(path) 返回path规范化的绝对路径 os.path.split(path) 将path分割成目录和文件名二元组返回 os.path.dirname(path) 返回path的目录。其实就是os.path.split(path)的第一个元素 os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。 即os.path.split(path)的第二个元素 os.path.exists(path) 如果path存在,返回True;如果path不存在,返回False os.path.isabs(path) 如果path是绝对路径,返回True os.path.isfile(path) 如果path是一个存在的文件,返回True。否则返回False os.path.isdir(path) 如果path是一个存在的目录,则返回True。否则返回False os.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略 os.path.getatime(path) 返回path所指向的文件或者目录的最后访问时间 os.path.getmtime(path) 返回path所指向的文件或者目录的最后修改时间 os.path.getsize(path) 返回path的大小 '''
注意:os.stat('path/filename') 获取文件/目录信息 的结构说明
stat 结构: st_mode: inode 保护模式 st_ino: inode 节点号。 st_dev: inode 驻留的设备。 st_nlink: inode 的链接数。 st_uid: 所有者的用户ID。 st_gid: 所有者的组ID。 st_size: 普通文件以字节为单位的大小;包含等待某些特殊文件的数据。 st_atime: 上次访问的时间。 st_mtime: 最后一次修改的时间。 st_ctime: 由操作系统报告的"ctime"。在某些系统上(如Unix)是最新的元数据更改的时间,在其它系统上(如Windows)是创建时间(详细信息参见平台的文档)。
常用模块--sys模块
sys模块是与python解释器交互的一个接口
sys.argv 命令行参数List,第一个元素是程序本身路径 sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit(1) sys.version 获取Python解释程序的版本信息 sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值 sys.platform 返回操作系统平台名称
import sys try: sys.exit(1) except SystemExit as e: print(e)
常用模块--re模块
讲正题之前我们先来看一个例子:https://reg.jd.com/reg/person?ReturnUrl=https%3A//www.jd.com/
这是京东的注册页面,打开页面我们就看到这些要求输入个人信息的提示。
假如我们随意的在手机号码这一栏输入一个11111111111,它会提示我们格式有误。
如何实现:
根据手机号码一共11位并且是只以13、14、15、18开头的数字这些特点,我们用python写了如下代码:
while True: phone_number = input('please input your phone number : ') if len(phone_number) == 11 \ and phone_number.isdigit()\ and (phone_number.startswith('13') \ or phone_number.startswith('14') \ or phone_number.startswith('15') \ or phone_number.startswith('18')): print('是合法的手机号码') else: print('不是合法的手机号码')
import re phone_number = input('please input your phone number : ') if re.match('^(13|14|15|18)[0-9]{9}$',phone_number): print('是合法的手机号码') else: print('不是合法的手机号码')
正则表达式
正则表达式本身也和python没有什么关系,就是匹配字符串内容的一种规则。
官方定义:正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,
组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑。
在线测试工具 http://tool.chinaz.com/regex/
首先要知道的是,谈到正则,就只和字符串相关了。在线工具中,你输入的每一个字都是一个字符串。
其次,如果在一个位置的一个值,不会出现什么变化,那么是不需要规则的。
比如你要用"1"去匹配"1",或者用"2"去匹配"2",直接就可以匹配上。这连python的字符串操作都可以轻松做到。
那么在之后我们更多要考虑的是在同一个位置上可以出现的字符的范围。
字符组 : [字符组] 在同一个位置可能出现的各种字符组成了一个字符组,在正则表达式中用[]表示 字符分为很多类,比如数字、字母、标点等等。 假如你现在要求一个位置"只能出现一个数字",那么这个位置上的字符只能是0、1、2...9这10个数之一。
正则 |
待匹配字符 |
匹配 |
说明 |
[0123456789] |
8 |
True |
在一个字符组里枚举合法的所有字符,字符组里的任意一个字符 |
[0123456789] |
a |
False |
由于字符组中没有"a"字符,所以不能匹配 |
[0-9] |
7 |
True |
也可以用-表示范围,[0-9]就和[0123456789]是一个意思 |
[a-z] |
s |
True |
同样的如果要匹配所有的小写字母,直接用[a-z]就可以表示 |
[A-Z] |
B |
True |
[A-Z]就表示所有的大写字母 |
[0-9a-fA-F] |
e |
True |
可以匹配数字,大小写形式的a~f,用来验证十六进制字符 |
字符:
元字符 |
匹配内容 |
. | 匹配除换行符以外的任意字符 |
\w | 匹配字母或数字或下划线 |
\s | 匹配任意的空白符 |
\d | 匹配数字 |
\n | 匹配一个换行符 |
\t | 匹配一个制表符 |
\b | 匹配一个单词的结尾 |
^ | 匹配字符串的开始 |
$ | 匹配字符串的结尾 |
\W |
匹配非字母或数字或下划线 |
\D |
匹配非数字 |
\S |
匹配非空白符 |
a|b |
匹配字符a或字符b |
() |
匹配括号内的表达式,也表示一个组 |
[...] |
匹配字符组中的字符 |
[^...] |
匹配除了字符组中字符的所有字符 |
量词:
量词 |
用法说明 |
* | 重复零次或更多次 |
+ | 重复一次或更多次 |
? | 重复零次或一次 |
{n} | 重复n次 |
{n,} | 重复n次或更多次 |
{n,m} | 重复n到m次 |
. ^ $
正则 | 待匹配字符 | 匹配 结果 |
说明 |
海. | 海燕海娇海东 | 海燕海娇海东 | 匹配所有"海."的字符 |
^海. | 海燕海娇海东 | 海燕 | 只从开头匹配"海." |
海.$ | 海燕海娇海东 | 海东 | 只匹配结尾的"海.$" |
* + ? { }
正则 | 待匹配字符 | 匹配 结果 |
说明 |
李.? | 李杰和李莲英和李二棍子 |
李杰 |
?表示重复零次或一次,即只匹配"李"后面一个任意字符 |
李.* | 李杰和李莲英和李二棍子 | 李杰和李莲英和李二棍子 |
*表示重复零次或多次,即匹配"李"后面0或多个任意字符 |
李.+ | 李杰和李莲英和李二棍子 | 李杰和李莲英和李二棍子 |
+表示重复一次或多次,即只匹配"李"后面1个或多个任意字符 |
李.{1,2} | 李杰和李莲英和李二棍子 |
李杰和 |
{1,2}匹配1到2次任意字符 |
注意:前面的*,+,?等都是贪婪匹配,也就是尽可能匹配,后面加?号使其变成惰性匹配
正则 | 待匹配字符 | 匹配 结果 |
说明 |
李.*? | 李杰和李莲英和李二棍子 | 李 李 李 |
惰性匹配 |
字符集[][^]
正则 | 待匹配字符 | 匹配 结果 |
说明 |
李[杰莲英二棍子]* | 李杰和李莲英和李二棍子 |
李杰 |
表示匹配"李"字后面[杰莲英二棍子]的字符任意次 |
李[^和]* | 李杰和李莲英和李二棍子 |
李杰 |
表示匹配一个不是"和"的字符任意次 |
[\d] | 456bdha3 |
4 |
表示匹配任意一个数字,匹配到4个结果 |
[\d]+ | 456bdha3 |
456 |
表示匹配任意个数字,匹配到2个结果 |
分组 ()与 或 |[^]
身份证号码是一个长度为15或18个字符的字符串,如果是15位则全部🈶️数字组成,首位不能为0;如果是18位,则前17位全部是数字,末位可能是数字或x,下面我们尝试用正则来表示:
正则 | 待匹配字符 | 匹配 结果 |
说明 |
^[1-9]\d{13,16}[0-9x]$ | 110101198001017032 |
110101198001017032 |
表示可以匹配一个正确的身份证号 |
^[1-9]\d{13,16}[0-9x]$ | 1101011980010170 |
1101011980010170 |
表示也可以匹配这串数字,但这并不是一个正确的身份证号码,它是一个16位的数字 |
^[1-9]\d{14}(\d{2}[0-9x])?$ | 1101011980010170 |
False |
现在不会匹配错误的身份证号了 |
^([1-9]\d{16}[0-9x]|[1-9]\d{14})$ | 110105199812067023 |
110105199812067023 |
表示先匹配[1-9]\d{16}[0-9x]如果没有匹配上就匹配[1-9]\d{14} |
转义符 \
在正则表达式中,有很多有特殊意义的是元字符,比如\d和\s等,如果要在正则中匹配正常的"\d"而不是"数字"就需要对"\"进行转义,变成'\\'。
在python中,无论是正则表达式,还是待匹配的内容,都是以字符串的形式出现的,在字符串中\也有特殊的含义,本身还需要转义。所以如果匹配一次"\d",字符串中要写成'\\d',那么正则里就要写成"\\\\d",这样就太麻烦了。这个时候我们就用到了r'\d'这个概念,此时的正则是r'\\d'就可以了。
正则 | 待匹配字符 | 匹配 结果 |
说明 |
\d | \d | False |
因为在正则表达式中\是有特殊意义的字符,所以要匹配\d本身,用表达式\d无法匹配 |
\\d | \d | True |
转义\之后变成\\,即可匹配 |
"\\\\d" | '\\d' | True |
如果在python中,字符串中的'\'也需要转义,所以每一个字符串'\'又需要转义一次 |
r'\\d' | r'\d' | True |
在字符串之前加r,让整个字符串不转义 |
贪婪匹配
贪婪匹配:在满足匹配时,匹配尽可能长的字符串,默认情况下,采用贪婪匹配
正则 | 待匹配字符 | 匹配 结果 |
说明 |
<.*> |
<script>...<script> |
<script>...<script> |
默认为贪婪匹配模式,会匹配尽量长的字符串 |
<.*?> | r'\d' |
<script> |
加上?为将贪婪匹配模式转为非贪婪匹配模式,会匹配尽量短的字符串 |
几个常用的非贪婪匹配Pattern
*? 重复任意次,但尽可能少重复 +? 重复1次或更多次,但尽可能少重复 ?? 重复0次或1次,但尽可能少重复 {n,m}? 重复n到m次,但尽可能少重复 {n,}? 重复n次以上,但尽可能少重复
.*?的用法
. 是任意字符 * 是取 0 至 无限长度 ? 是非贪婪模式。 何在一起就是 取尽量少的任意字符,一般不会这么单独写,他大多用在: .*?x 就是取前面任意长度的字符,直到一个x出现
re模块下的常用方法
import re ret = re.findall('a', 'eva egon yuan') # 返回所有满足匹配条件的结果,放在列表里 print(ret) #结果 : ['a', 'a'] ret = re.search('a', 'eva egon yuan').group() print(ret) #结果 : 'a' # 函数会在字符串内查找模式匹配,只到找到第一个匹配然后返回一个包含匹配信息的对象,该对象可以 # 通过调用group()方法得到匹配的字符串,如果字符串没有匹配,则返回None。 ret = re.match('a', 'abc').group() # 同search,不过尽在字符串开始处进行匹配 print(ret) #结果 : 'a' ret = re.split('[ab]', 'abcd') # 先按'a'分割得到''和'bcd',在对''和'bcd'分别按'b'分割 print(ret) # ['', '', 'cd'] ret = re.sub('\d', 'H', 'eva3egon4yuan4', 1)#将数字替换成'H',参数1表示只替换1个 print(ret) #evaHegon4yuan4 ret = re.subn('\d', 'H', 'eva3egon4yuan4')#将数字替换成'H',返回元组(替换的结果,替换了多少次) print(ret) obj = re.compile('\d{3}') #将正则表达式编译成为一个 正则表达式对象,规则要匹配的是3个数字 ret = obj.search('abc123eeee') #正则表达式对象调用search,参数为待匹配的字符串 print(ret.group()) #结果 : 123 import re ret = re.finditer('\d', 'ds3sy4784a') #finditer返回一个存放匹配结果的迭代器 print(ret) # <callable_iterator object at 0x10195f940> print(next(ret).group()) #查看第一个结果 print(next(ret).group()) #查看第二个结果 print([i.group() for i in ret]) #查看剩余的左右结果
注意:
1 findall的优先级查询:
import re ret = re.findall('www.(baidu|oldboy).com', 'www.oldboy.com') print(ret) # ['oldboy'] 这是因为findall会优先把匹配结果组里内容返回,如果想要匹配结果,取消权限即可 ret = re.findall('www.(?:baidu|oldboy).com', 'www.oldboy.com') print(ret) # ['www.oldboy.com']
2 split的优先级查询
ret=re.split("\d+","eva3egon4yuan") print(ret) #结果 : ['eva', 'egon', 'yuan'] ret=re.split("(\d+)","eva3egon4yuan") print(ret) #结果 : ['eva', '3', 'egon', '4', 'yuan'] #在匹配部分加上()之后所切出的结果是不同的, #没有()的没有保留所匹配的项,但是有()的却能够保留了匹配的项, #这个在某些需要保留匹配部分的使用过程是非常重要的。