Processing math: 100%

BZOJ 2724蒲公英 (分块) 【内有块大小证明】

题面

luogu传送门

分析

先分块,设块大小为x(之后我们会证明块大小取何值会更优)

步骤1

把所有的数离散化,然后对每个值开一个vector pos[i],pos[i]存储数i出现的位置

我们设查询的区间为[l,r],需要求数v出现的次数,然后在vector中二分查找出第一个>=l的数的位置p1,和第一个>r的数的位置p2,p2-p1即为数v出现的次数

例:
离散化后的数组a={1,3,3,2,3,1,3 },则pos[3]={2,3,5,7},因为第2,3,5个数为3
我们需要查找[2,6]中数3出现的次数,发现p1=2,p2=4,出现的次数即为2

步骤2

然后我们考虑询问,如果只记录每个块里的众数显然是不行的,因为我们需要把许多个块的结果合起来,而众数不满足区间可加性,无法在O(n)的时间内完成结果合并

因此我们预处理出所有块端点组成的区间,mode[l][r]maxt[l][r],表示[第l个块的起点,第r个块的终点]这个区间里的众数和众数的出现次数

查询[l,r]时我们可以得到中间的一个由块端点组成的区间,可以直接通过刚刚的预处理得到众数和众数的出现次数

两边多余的部分直接用步骤1暴力即可

至于mode,maxt数组如何预处理,直接用两重for循环来实现

首先枚举块的起点i,然后j从i遍历到n,用一个临时数组cnt来记录每个数出现的次数,就可以求出区间[i,j]的众数,如果j正好是块端点,则记录答案

for(int i=1; i<=bl; i++) {
int ans=INF;
int tim=0;
for(int j=lb(i); j<=n; j++) {
cnt[a[j]]++;
if(cnt[a[j]]>tim||(cnt[a[j]]==tim&&a[j]<ans)) {
ans=a[j];
tim=cnt[a[j]];
}
if(j%sz==0) {
mode[i][j/sz]=ans;
maxt[i][j/sz]=tim;
}else if(j==n){
mode[i][bl]=ans;
maxt[i][bl]=tim;
}
}
for(int j=lb(i); j<=n; j++) cnt[a[j]]=0;
}

时间复杂度分析

设块的大小为x,假设n为x的倍数

初始化部分:

从第一个块末尾需要遍历n-x次,从第二个块末尾需要遍历n-2x次,从第nx个块末尾需要遍历nx·nx

总的遍历次数为

(nx)+(n2x)++nx·nx=n22x12n

其中12n可忽略,时间复杂度为O(n2x)

查询部分:

考虑查询的极端情况,查询[2,n-1]

则需要遍历左,右长度各为(x-1)的块(可近似看成x)

时间复杂度为O(xlogn)

m次询问O(mxlogn)

所以总时间复杂度为O(n2x+mxlogn)

根据均值不等式

x=n2mlogn时,总时间复杂度为2n2mlogn=O(nmlogn)

因此块大小为n2mlogn时最优,由于n,m同级,可近似取nlogn

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<cmath>
#include<vector>
#define maxn 100005
#define maxs 2005
#define INF 0x7fffffff
using namespace std;
inline void qread(int &x) {
x=0;
int sign=1;
char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') sign=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
x=x*sign;
}
inline void qread(long long &x) {
x=0;
long long sign=1;
char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') sign=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
x=x*sign;
}
inline void qprint(int x) {
if(x<0) {
putchar('-');
qprint(-x);
} else if(x==0) {
putchar('0');
return;
} else {
if(x/10>0) qprint(x/10);
putchar('0'+x%10);
}
}
int n,m,num,sz,bl;
int id[maxn];//第i个位置属于的块编号
int a[maxn];
int b[maxn];
inline int lb(int id) {//求第id个块的左端点
return sz*(id-1)+1;
}
inline int rb(int id) {//求第id个块的右端点
return sz*id>n?n:sz*id;
}
vector<int>pos[maxn];
int get_count(int val,int l,int r) {
return upper_bound(pos[val].begin(),pos[val].end(),r)-lower_bound(pos[val].begin(),pos[val].end(),l);
}
int cnt[maxn];
int mode[maxs][maxs];
int maxt[maxs][maxs];
void ini() {
for(int i=1; i<=n; i++) {
pos[a[i]].push_back(i);
}
// for(int i=1; i<=num; i++) {
// sort(pos[b[i]].begin(),pos[b[i]].end());
// }
for(int i=1; i<=bl; i++) {
int ans=INF;
int tim=0;
for(int j=lb(i); j<=n; j++) {
cnt[a[j]]++;
if(cnt[a[j]]>tim||(cnt[a[j]]==tim&&a[j]<ans)) {
ans=a[j];
tim=cnt[a[j]];
}
if(j%sz==0) {
mode[i][j/sz]=ans;
maxt[i][j/sz]=tim;
}else if(j==n){
mode[i][bl]=ans;
maxt[i][bl]=tim;
}
}
for(int j=lb(i); j<=n; j++) cnt[a[j]]=0;
}
}
int query(int l,int r) {
int ans=INF;
int tim=0;
if(id[l]+1<=id[r]-1) {
ans=mode[id[l]+1][id[r]-1];
tim=maxt[id[l]+1][id[r]-1];
}
for(int i=l; i<=min(r,rb(id[l])); i++) {
int tmp=get_count(a[i],l,r);
if(tmp>tim||(tmp==tim&&a[i]<ans)) {
ans=a[i];
tim=tmp;
}
}
if(id[l]!=id[r]) {
for(int i=lb(id[r]); i<=r; i++) {
int tmp=get_count(a[i],l,r);
if(tmp>tim||(tmp==tim&&a[i]<ans)) {
ans=a[i];
tim=tmp;
}
}
}
// return ans;
return b[ans];
}
int main() {
int l,r;
qread(n);
qread(m);
for(int i=1; i<=n; i++) {
qread(a[i]);
b[i]=a[i];
}
sort(b+1,b+1+n);
num=unique(b+1,b+1+n)-b-1;
for(int i=1; i<=n; i++) {
a[i]=lower_bound(b+1,b+1+num,a[i])-b;
}
sz=sqrt(n/(log(n)/log(2)));
bl=1;
for(int i=1; i<=n; i++) {
id[i]=bl;
if(i%sz==0) bl++;
}
int x=0;
ini();
for(int i=1; i<=m; i++) {
qread(l);
qread(r);
l=(l+x-1)%n+1;
r=(r+x-1)%n+1;
if(l>r) swap(l,r);
x=query(l,r);
qprint(x);
putchar('\n');
}
}
posted @   birchtree  阅读(204)  评论(0)    收藏  举报
编辑推荐:
· C#高性能开发之类型系统:从 C# 7.0 到 C# 14 的类型系统演进全景
· 从零实现富文本编辑器#3-基于Delta的线性数据结构模型
· 记一次 .NET某旅行社酒店管理系统 卡死分析
· 长文讲解 MCP 和案例实战
· Hangfire Redis 实现秒级定时任务,使用 CQRS 实现动态执行代码
阅读排行:
· 使用TypeScript开发微信小程序(云开发)-入门篇
· 没几个人需要了解的JDK知识,我却花了3天时间研究
· C#高性能开发之类型系统:从 C# 7.0 到 C# 14 的类型系统演进全景
· 管理100个小程序-很难吗
· 在SqlSugar的开发框架中增加对低代码EAV模型(实体-属性-值)的WebAPI实现支持
点击右上角即可分享
微信分享提示