Codeforces 1114D(区间DP)
题面
分析
法1(区间DP):
首先,我们可以把连续的相等区间缩成一个数,用unique来实现,不影响结果
{1,2,2,3,3,3,5,3,4}->{1,2,3,5,3,4}
先从一个极端情况来考虑,a={1,2,3,4,5},此时答案显然为4,从1个点出发,先把它变成和左边的点相等,再把它变成和右边的点相等,一共需n-1次
假设我们已经把中间某个区间[i,j]变成相同颜色的一段,如{1,5,5,5,5,4}
如果a[i-1]!=a[j+1],则需要变两次,如果a[i-1]=a[j+1],只需要变一次了,
所以我们需要求出形如a[i-1]=a[j+1]的数对个数ans,由于每个这样的数对会少变一次
所以答案就是n-1-ans
那么如何求出ans呢
区间DP,\(dp[i][j]\)表示区间\([i,j]\)外的数对个数
则\(dp[i][j]=\begin{cases} max(dp[i-1][j],dp[i][j+1]) \\ max(dp[i-1][j],dp[i][j+1],dp[i-1][j+1]+1),a[i-1]=a[j+1]\end{cases}\)
初始值\(dp[1][n]\)=0
最后得到的\(dp[i][i]\)表示除了i之外的数列中的数对个数,即从i开始变需要变n-1-\(dp[i][i]\)次
取\(dp[i][i]\)的最大值即可
时间复杂度\(O(n^2)\)
法二(CF官方题解的做法):
由法一的分析,我们注意到数对会形成回文子序列
如{1,3,2,5,3,1},则1 3 2 3 1就形成了回文子序列,
显然变化次数为n-(回文子序列长度+1)/2
因此我们只要求出最长的回文子序列长度,可以把原串和反串跑LCS,时间复杂度\(O(n^2)\)
用LCS转LIS可以优化到\(O(n\log n)\)
代码
#include<iostream> #include<cstdio> #include<algorithm> #define maxn 5005 using namespace std; int n; int a[maxn]; int dp[maxn][maxn]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&a[i]); n=unique(a+1,a+1+n)-a-1; dp[1][n]=0; for(int len=n-1;len>=1;len--){ for(int i=1;i+len-1<=n;i++){ int j=i+len-1; dp[i][j]=max(dp[i-1][j],dp[i][j+1]); if(i-1>=0&&j+1<=n&&a[i-1]==a[j+1]) dp[i][j]=max(dp[i][j],dp[i-1][j+1]+1); } } int ans=0; for(int i=1;i<=n;i++) ans=max(ans,dp[i][i]); printf("%d\n",n-1-ans); }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】凌霞软件回馈社区,携手博客园推出1Panel与Halo联合会员
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步