统计学 一 集中趋势

预览

参考书籍:浙大概率论与数理统计, 俄罗斯的概率教材, 概率-施利亚耶夫著作, 统计学及应用-sarah boslaugh著作    

统计学分类:

    描述统计学:展示数据, 描述数据的集中和离散程度

    推断统计学:根据样本数据推断总体的数据特征

统计趋势:

    集中趋势, 离散趋势

统计学应用:

    有数据, 就有统计分析的需求

把握要点:

概率论是统计学实施的基础, 统计学倾向于解决实际问题

    常用符号:

        μ: 总体均值

        σ:总体标准差

        s:样本方差

        Σ:求和

 

总体和样本:

    同一个数据集合既可以是总体也可以是样本, 具体取决于对该数据集合的分析目标

    分析目标是数据集的数据分布, 则该数据集是总体

    分析目标是通过该数据集,推断其他同类数据的趋势,则该数据集为样本

    例如:

        一个数据集为某个班学生的期末成绩

        分析目标是描述成绩分布的时候, 那么该班的期末成绩为总体

        分析目标是通过该班的成绩推断其他学生的期末成绩的时候, 那么该班的期末成绩为样本

    

 

集中趋势描述度量:

数据向中心值靠拢的程度,反映的是数据中心点的位置

反映集中趋势的测度的统计量: 均值, 中位数, 众数

 

    均值:

算术平均数, 所有统计数据的平均值, 描述平均水平

 

        均值对较小或者较大的异常值包容性较小, 容易受极端值的影响, 均值并不适合极端值多的数据集

        对于偏态数据集(非对称数据) 均值结果会产生误导, 不能准确反映大多数数据的趋势, 则改用中位数取代

        极端值: 也叫离群点,

 

    分组数据均值:

        分组区间中点X分组频数

 

    中位数:

数据按照大小的排列顺序,

位于排序后的数据后的中间的数据

    排序后的个数为偶数时: 中位数是中间两个数值的平均值

    排序后的个数为奇数时: 中位数是就是中间的数值

 

太过于分散的数据集, 中位数也不能很好 的描述数据的集中趋势, 缺少敏感性

 

众数:

数据集中出现频数最多的数值, 众数不唯一

 

当数据具有明显的集中趋势的时候, 代表性较好, 不受极端值的影响

 

离散趋势描述度量:

    描述数据分散程度的度量, 也会被称为, 波动测度或者分布测度

    反映离散程度的度量: 极差, 四分位差, 方差, 标准差

    

    极差:

        数据中最大值最小值之差

        简单描述数据的范围大小

 

    

    

 

    

posted @ 2019-05-24 00:10  binyang  阅读(791)  评论(0编辑  收藏  举报