天涯一飘絮

导航

 

1 Hadoop中各工程包依赖简述     Google的核心竞争技术是它的计算平台。Google的大牛们用了下面5篇文章,介绍了它们的计算设施。     GoogleCluster: http://research.google.com/archive/googlecluster.html     Chubby:http://labs.google.com/papers/chubby.html     GFS:http://labs.google.com/papers/gfs.html     BigTable:http://labs.google.com/papers/bigtable.html     MapReduce:http://labs.google.com/papers/mapreduce.html     很快,Apache上就出现了一个类似的解决方案,目前它们都属于Apache的Hadoop项目,对应的分别是:       Chubby-->ZooKeeper       GFS-->HDFS       BigTable-->HBase       MapReduce-->Hadoop     目前,基于类似思想的Open Source项目还很多,如Facebook用于用户分析的Hive。     HDFS作为一个分布式文件系统,是所有这些项目的基础。分析好HDFS,有利于了解其他系统。由于Hadoop的HDFS和MapReduce是同一个项目,我们就把他们放在一块,进行分析。     Hadoop包之间的依赖关系比较复杂,原因是HDFS提供了一个分布式文件系统,  该系统提供API,可以屏蔽本地文件系统和分布式文件系统,甚至象Amazon S3这样的在线存储系统。这就造成了分布式文件系统的实现,或者是分布式 文件系统的底层的实现,依赖于某些貌似高层的功能。功能的相互引用,造成了蜘蛛网型的依赖关系。一个典型的例子就是包conf,conf用于读取系统配 置,它依赖于fs,主要是读取配置文件的时候,需要使用文件系统,而部分的文件系统的功能,在包fs中被抽象了。

2 Hadoop和Google分布式系统对应产品

 

3 Hadoop工程中各工程包依赖图示

4  Hdoop工程中各工程包文件夹图示

5 各包功能

Package

Dependences

tool

提供一些命令行工具,如DistCp,archive

mapreduce

Hadoop的Map/Reduce实现

filecache

提供HDFS文件的本地缓存,用于加快Map/Reduce的数据访问速度

fs

文件系统的抽象,可以理解为支持多种文件系统实现的统一文件访问接口

hdfs

HDFS,Hadoop的分布式文件系统实现

ipc

一个简单的IPC的实现,依赖于io提供的编解码功能

参考:http://zhangyu8374.iteye.com/blog/86306

io

表示层。将各种数据编码/解码,方便于在网络上传输

net

封装部分网络功能,如DNS,socket

security

用户和用户组信息

conf

系统的配置参数

metrics

系统统计数据的收集,属于网管范畴

util

工具类

record

根据DDL(数据描述语言)自动生成他们的编解码函数,目前可以提供C++和Java

http

基于Jetty的HTTP Servlet,用户通过浏览器可以观察文件系统的一些状态信息和日志

log

提供HTTP访问日志的HTTP Servlet

 

  原创文章欢迎转载,转载时请注明出处。

  作者推荐文章:

    》Java自学之道

    》Eclipse中部署Hadoop2.3.0

    》如何获取系统信息(包括操作系统、jvm、cpu、内存、硬盘、网络等)

    》如何生成二维码过程详解

posted on 2015-02-12 15:03  冰云  阅读(281)  评论(0编辑  收藏  举报