LuoguP3806 【模板】点分治1 (点分治)
给定一棵有n个点的树,询问树上距离为k的点对是否存在。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#else
#define D_e_Line ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 10007;
const int MAXX = 10000000;
struct Edge{
int nxt,pre,w;
}e[N<<1];
int cntEdge,head[N];
inline void add(int u,int v,int w){
e[++cntEdge] = (Edge){head[u], v, w}, head[u] = cntEdge;
}
int minn, root, treeSize;
int vis[N],siz[N];
inline void GetRoot(int u,int fa){
siz[u] = 1;
int sum = 0;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(vis[v] || v == fa) continue;
GetRoot(v, u);
sum = Max(sum, siz[v]);
siz[u] += siz[v];
}
sum = Max(sum, treeSize - siz[u]);
if(sum < minn){
minn = sum;
root = u;
}
}
int dis[N];
int tot;
inline void GetDistance(int u,int fa,int w){
dis[++tot] = w;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(vis[v] || v == fa) continue;
GetDistance(v, u, w + e[i].w);
}
}
int num[MAXX];
inline void Solve(int u,int w,int flag){ // w is the influence of the beginning node
tot = 0;
GetDistance(u, u, 0);
R(i,1,tot){
R(j,1,tot){
if(flag && dis[i] + dis[j] <= MAXX)
++ num[dis[i] + dis[j]];
else
if(dis[i] + dis[j] +w <= MAXX)
-- num[dis[i] + dis[j] + w];
}
}
}
inline void DFS(int u){
Solve(u, 0, 1);
vis[u] = true;
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(vis[v]) continue;
Solve(v, (e[i].w << 1), 0); // QAQ // \ T^T /
treeSize = siz[v];
minn = 0x7fffffff;
GetRoot(v, u);
DFS(root);
}
}
int main(){
int n,m;
io >> n >> m;
R(i,2,n){
int u,v,w;
io >> u >> v >> w;
add(u, v, w);
add(v, u, w);
}
treeSize = n; // because I forgot this sentence, the whole morning...
minn = 0x7fffffff;
GetRoot(1, 1);
DFS(root);
while(m--){
int x;
io >> x;
if(num[x])
printf("AYE\n");
else
printf("NAY\n");
}
return 0;
}
a faster way in some cases
inline int Solve(int u,int w){
tot = 0;
GetDistance(u, u, 0);
sort(dis + 1, dis + tot + 1);
int l = 0, r = tot;
while(l < r){
while(l < r && dis[l] + dis[r] > MAXX) -- r;
ans += r - l;
++ l;
}
return ans;
}