scrapy-redis使用以及剖析
scrapy-redis是一个基于redis的scrapy组件,通过它可以快速实现简单分布式爬虫程序,该组件本质上提供了三大功能:
- scheduler - 调度器
- dupefilter - URL去重规则(被调度器使用)
- pipeline - 数据持久化
scrapy-redis组件
1. URL去重
定义去重规则(被调度器调用并应用) a. 内部会使用以下配置进行连接Redis # REDIS_HOST = 'localhost' # 主机名 # REDIS_PORT = 6379 # 端口 # REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置) # REDIS_PARAMS = {} # Redis连接参数 默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,}) # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis # REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8' b. 去重规则通过redis的集合完成,集合的Key为: key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())} 默认配置: DUPEFILTER_KEY = 'dupefilter:%(timestamp)s' c. 去重规则中将url转换成唯一标示,然后在redis中检查是否已经在集合中存在 from scrapy.utils import request from scrapy.http import Request req = Request(url='http://www.cnblogs.com/wupeiqi.html') result = request.request_fingerprint(req) print(result) # 8ea4fd67887449313ccc12e5b6b92510cc53675c PS: - URL参数位置不同时,计算结果一致; - 默认请求头不在计算范围,include_headers可以设置指定请求头 示例: from scrapy.utils import request from scrapy.http import Request req = Request(url='http://www.baidu.com?name=8&id=1',callback=lambda x:print(x),cookies={'k1':'vvvvv'}) result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) req = Request(url='http://www.baidu.com?id=1&name=8',callback=lambda x:print(x),cookies={'k1':666}) result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) """ # Ensure all spiders share same duplicates filter through redis. # DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
2. 调度器
""" 调度器,调度器使用PriorityQueue(有序集合)、FifoQueue(列表)、LifoQueue(列表)进行保存请求,并且使用RFPDupeFilter对URL去重 a. 调度器 SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表) SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空 SCHEDULER_FLUSH_ON_START = True # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空 SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。 SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类 """ # Enables scheduling storing requests queue in redis. SCHEDULER = "scrapy_redis.scheduler.Scheduler" # Default requests serializer is pickle, but it can be changed to any module # with loads and dumps functions. Note that pickle is not compatible between # python versions. # Caveat: In python 3.x, the serializer must return strings keys and support # bytes as values. Because of this reason the json or msgpack module will not # work by default. In python 2.x there is no such issue and you can use # 'json' or 'msgpack' as serializers. # SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # Don't cleanup redis queues, allows to pause/resume crawls. # SCHEDULER_PERSIST = True # Schedule requests using a priority queue. (default) # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # Alternative queues. # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue' # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue' # Max idle time to prevent the spider from being closed when distributed crawling. # This only works if queue class is SpiderQueue or SpiderStack, # and may also block the same time when your spider start at the first time (because the queue is empty). # SCHEDULER_IDLE_BEFORE_CLOSE = 10
3. 数据持久化
2. 定义持久化,爬虫yield Item对象时执行RedisPipeline a. 将item持久化到redis时,指定key和序列化函数 REDIS_ITEMS_KEY = '%(spider)s:items' REDIS_ITEMS_SERIALIZER = 'json.dumps' b. 使用列表保存item数据
4. 起始URL相关
""" 起始URL相关 a. 获取起始URL时,去集合中获取还是去列表中获取?True,集合;False,列表 REDIS_START_URLS_AS_SET = False # 获取起始URL时,如果为True,则使用self.server.spop;如果为False,则使用self.server.lpop b. 编写爬虫时,起始URL从redis的Key中获取 REDIS_START_URLS_KEY = '%(name)s:start_urls' """ # If True, it uses redis' ``spop`` operation. This could be useful if you # want to avoid duplicates in your start urls list. In this cases, urls must # be added via ``sadd`` command or you will get a type error from redis. # REDIS_START_URLS_AS_SET = False # Default start urls key for RedisSpider and RedisCrawlSpider. # REDIS_START_URLS_KEY = '%(name)s:start_urls'
scrapy-redis示例
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # # # from scrapy_redis.scheduler import Scheduler # from scrapy_redis.queue import PriorityQueue # SCHEDULER = "scrapy_redis.scheduler.Scheduler" # SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表) # SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key # SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle # SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空 # SCHEDULER_FLUSH_ON_START = False # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空 # SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。 # SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key # SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类 # # # # REDIS_HOST = '10.211.55.13' # 主机名 # REDIS_PORT = 6379 # 端口 # # REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置) # # REDIS_PARAMS = {} # Redis连接参数 默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,}) # # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis # REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8'
import scrapy class ChoutiSpider(scrapy.Spider): name = "chouti" allowed_domains = ["chouti.com"] start_urls = ( 'http://www.chouti.com/', ) def parse(self, response): for i in range(0,10): yield
你现在所遭遇的每一个不幸,都来自一个不肯努力的曾经。大数据SRE(运维开发)学习交流群239963844
posted on 2017-09-05 16:31 bigdata_devops 阅读(273) 评论(0) 编辑 收藏 举报