hdu_5680_zxa and set(想法题)

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5680

题意:

 

问题描述
zxa有一个集合A=\{a_1,a_2,\cdots,a_n\}A={a1,a2,,an}nn表示集合AA的元素个数,这个集合明显有(2^n-1)(2n1)个非空子集合。

对于每个属于AA的子集合B=\{b_1,b_2,\cdots,b_m\}(1\leq m\leq n)B={b1,b2,,bm}(1mn)mm表示集合BB的元素个数,zxa定义它的价值是\min(b_1,b_2,\cdots,b_m)min(b1,b2,,bm)。

zxa很好奇,如果令S_{odd}Sodd表示集合AA的所有含奇数个元素的非空子集合的价值之和,S_{even}Seven表示集合AA的所有含偶数个元素的非空子集合的价值之和,那么|S_{odd}-S_{even}|SoddSeven是多少,你能帮助他吗?
输入描述
第一行有一个正整数TT,表示有TT组数据。

对于每组数据:

第一行有一个正整数nn,表示集合有nn个元素。

第二行有nn个互异的正整数,表示集合的元素a_1,a_2,\cdots,a_na1,a2,,an。

每一行相邻数字之间只有一个空格。

1\leq T\leq 100,1\leq n\leq 30,1\leq a_i\leq 10^91T100,1n30,1ai109
输出描述
对于每组数据,输出一行,包含一个非负整数,表示|S_{odd}-S_{even}|SoddSeven的值。
输入样例
3
1
10
3
1 2 3
4
1 2 3 4
输出样例
10
3
4
Hint
对于第一组样例,A=\{10\}A={10},它只有一个含奇数个元素的子集合\{10\}{10},没有含偶数个元素的子集合,所以S_{odd}=10,S_{even}=0,|S_{odd}-S_{even}|=10Sodd=10,Seven=0,SoddSeven=10。

对于第二组样例,A=\{1,2,3\}A={1,2,3},它有四个含奇数个元素的子集合\{1\},\{2\},\{3\},\{1,2,3\}{1},{2},{3},{1,2,3},有三个含偶数个元素的子集合\{1,2\},\{2,3\},\{1,3\}{1,2},{2,3},{1,3},所以S_{odd}=1+2+3+1=7,S_{even}=1+2+1=4,|S_{odd}-S_{even}|=3Sodd=1+2+3+1=7,Seven=1+2+1=4,SoddSeven=3

题解:

 

乍一看,还有点吓人,其实就是输出最大值

 1 #include<cstdio>
 2 int main(){
 3     int t,n,max,tmp,i;
 4     scanf("%d",&t);
 5     while(t--){
 6         scanf("%d",&n);
 7         for(i=1,max=0;i<=n;i++){scanf("%d",&tmp);max=tmp>max?tmp:max;}
 8         printf("%d\n",max);
 9     }
10     return 0;
11 }
View Code

 


 

posted @ 2016-05-14 22:27  bin_gege  阅读(290)  评论(0编辑  收藏  举报