hdu_1392_Surround the Trees(凸包)

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1392

题意:求凸包,不知道的百度

题解:模版题

 1 #include<cstdio>
 2 #include<cmath>
 3 #include<algorithm>
 4 using namespace std;
 5 /*  
 6 * 求凸包,Graham算法  * 点的编号0~n-1  
 7 * 返回凸包结果Stack[0~top-1]为凸包的编号 
 8  */ 
 9 const int MAXN = 110;
10 const double eps = 1e-8; 
11 const double PI = acos(-1.0); 
12 int sgn(double x) { 
13  if(fabs(x) < eps)return 0; 
14  if(x < 0)return -1;  
15  else return 1; } 
16 struct Point {
17      double x,y; 
18      Point(){} 
19      Point(double _x,double _y){x = _x,y = _y;} 
20      Point operator -(const Point &b)const{return Point(x-b.x,y-b.y);}//叉积 
21      double operator ^(const Point &b)const{return x*b.y-y*b.x;}//点积 
22      double operator *(const Point &b)const{return x*b.x + y*b.y;}//绕原点旋转角度B(弧度值),后x,y的变化 
23      void transXY(double B){double tx = x,ty = y,x = tx*cos(B) - ty*sin(B),y = tx*sin(B) + ty*cos(B);}
24 }list[MAXN];
25 int S[MAXN],top;//相对于list[0]的极角排序
26 
27 double dist(Point a,Point b){return sqrt((a-b)*(a-b));}
28 bool _cmp(Point p1,Point p2){
29     double tmp =(p1-list[0])^(p2-list[0]); 
30     if(sgn(tmp)>0)return 1; 
31     else if(sgn(tmp)==0&&sgn(dist(p1,list[0])-dist(p2,list[0]))<= 0)return 1;  
32     return 0;
33 }
34 void Graham(int n){
35     Point p0=list[0],tp; 
36     int k=0;
37     for(int i=1;i<n;i++)if((p0.y > list[i].y)||(p0.y ==list[i].y&&p0.x>list[i].x))p0 =list[i],k=i;
38     tp=list[k],list[k]=list[0],list[0]=tp,sort(list+1,list+n,_cmp);
39     if(n==1){top=1,S[0]=0;return;} 
40     if(n==2){top=2,S[0]=0,S[1]=1;return;} 
41     S[0]=0,S[1]=1,top=2; 
42     for(int i=2;i<n;i++){
43         while(top>1&&sgn((list[S[top-1]]-list[S[top-2]])^(list[i]-list[S[top-2]]))<=0)top--;
44         S[top++]=i; 
45     } 
46 }
47 
48 int main(){
49     int n;
50     while(~scanf("%d",&n),n){
51         for(int i=0;i<n;i++)scanf("%lf%lf",&list[i].x,&list[i].y);
52         if(n==1){puts("0.00");continue;}
53         else if(n==2){printf("%.2lf\n",dist(list[0],list[1]));continue;}
54         Graham(n);
55         double ans=0;
56         for(int i=0;i<top-1;i++)ans+=dist(list[S[i]],list[S[i+1]]);
57         ans+=dist(list[S[0]],list[S[top-1]]);
58         printf("%.2lf\n",ans);
59     }
60     return 0;
61 }
View Code

 



 

posted @ 2016-05-26 09:58  bin_gege  阅读(98)  评论(0编辑  收藏  举报