FFT之频率与幅值的确定(转)
FFT之后得到的是什么数
FFT之后得到的那一串复数是波形对应频率下的幅度特征,注意这个是幅度特征不是复制,下面要讲两个问题:1.如何获取频率,2.如何获取幅值
获取频率
FFT变换如何获取频率?傅里叶变换并没对频率进行任何计算,频率只与采样率和进行傅里叶变换的点数相关,注意这里是进行傅里叶变换的点数而不一定是信号的长度。
FFT变换完第一个数时0Hz频率,0Hz就是没有波动,没有波动有个专业一点的说法,叫直流分量。
后面第二个复数对应的频率是0Hz+频谱分辨率,每隔一个加一次,频谱分辨率Δf计算公式如下:
Δf=FsN
式中:
Fs为采样率
N为FFT的点数
因此只要Fs和N定了,频域就定下来了。
FFT变换后的第一个实数 - 直流分量
FFT之后的第一个结果表示了时域信号中的直流成分的多少,所谓直流信号,代表和基准0的偏移量。
上面的结果不好说明,下面再看一个例子:
oneWave = [1,1,1,1,1,1,1,1];fft(oneWave)
输出:
8 0 0 0 0 0 0 0
oneWave 的直流分量是1,但计算结果是8,这里又引入一个问题,FFT之后的数值不是真实的幅值,需要进行转转换,第一个点需要除以N,才能还原为原来的结果
FFT变换后的复数模 - 幅度
假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A
的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍
也就是说,要得出真实幅值,需要把除了第1个点(i=0)以及最后一个点(i=N/2)除以N以外,其余点需要求得的模除以N/2
这是因为傅里叶级数对应时域幅值,其中已经包含了1/N项,而fourier变换中没有该系数,
所以,进行完fft变换后需除以N/2才能与时域对应上。
FFT的计算公式
Fn=∑i=0N−1xie−2πjNni
实际应用中,只有i=0~N/2是有用的
全世界绝大部分的FFT算法计算出来后都需要进行幅度的转换的,幅值根据需求有不同需求
本文来自博客园,作者:NLazyo,转载请注明原文链接:https://www.cnblogs.com/bile/p/11799554.html