python实现--参数估计
求置信区间
抽取样本, 样本量为200
np.random.seed(42) coffee_full = pd.read_csv('coffee_dataset.csv') coffee_red = coffee_full.sample(200) #this is the only data you might actually get in the real world. coffee_red.head()
计算样本中喝咖啡的均值
(coffee_red[coffee_red['drinks_coffee'] == True]['height'].mean()>68.11962990858618
重复抽取样本,计算其他样本中喝咖啡的均值,得到抽样分布
boot_means = [] for _ in range(10000): bootsample = coffee_full.sample(200, replace=True) mean = bootsample[bootsample['drinks_coffee'] == False]['height'].mean() boot_means.append(mean)
抽样分布
计算抽样分布的置信区间以估计总体均值, 置信度95%
np.percentile(boot_means, 2.5), np.percentile(boot_means, 97.5)
输出:
(65.7156685999191, 67.17367777514218)