干货 | TensorFlow的55个经典案例
导语: 本文是TensorFlow实现流行机器学习算法的教程汇集,目标是让读者可以轻松通过清晰简明的案例深入了解 TensorFlow。这些案例适合那些想要实现一些 TensorFlow 案例的初学者。本教程包含还包含笔记和带有注解的代码。
最好的学习就是不断的实践,推荐 BigQuant 人工智能量化投资 一站式的python+机器学习+量化投资平台,打开浏览器就可以使用投资数据和机器学习算法。
第一步:给TF新手的教程指南
1:tf初学者需要明白的入门准备
-
机器学习入门笔记:
aymericdamien/TensorFlow-Examples -
MNIST 数据集入门笔记
aymericdamien/TensorFlow-Examples
2:tf初学者需要了解的入门基础
-
Hello World
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py -
基本操作
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py
3:tf初学者需要掌握的基本模型
-
最近邻:
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py -
线性回归:
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py -
Logistic 回归:
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py
4:tf初学者需要尝试的神经网络
-
多层感知器:
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/multilayer_perceptron.py -
卷积神经网络:
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py -
循环神经网络(LSTM):
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py -
双向循环神经网络(LSTM):
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/bidirectional_rnn.py -
动态循环神经网络(LSTM)
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py -
自编码器
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py
5:tf初学者需要精通的实用技术
-
保存和恢复模型
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/save_restore_model.py -
图和损失可视化
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_basic.py -
Tensorboard——高级可视化
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_advanced.py
6:tf初学者需要的懂得的多GPU基本操作
- 多 GPU 上的基本操作
aymericdamien/TensorFlow-Exampleshttps://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_MultiGPU/multigpu_basics.py
7:案例需要的数据集
有一些案例需要 MNIST 数据集进行训练和测试。运行这些案例时,该数据集会被自动下载下来(使用 input_data.py)。
- MNIST数据集笔记 :aymericdamien/TensorFlow-Examples
- 官方网站: MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges
第二步:为TF新手准备的各个类型的案例、模型和数据集
初步了解:TFLearn TensorFlow
接下来的示例来自TFLearn,这是一个为 TensorFlow 提供了简化的接口的库。里面有很多示例和预构建的运算和层。
使用教程:
TFLearn 快速入门。通过一个具体的机器学习任务学习 TFLearn 基础。开发和训练一个深度神经网络分类器。
- TFLearn地址:tflearn/tflearn
- 示例:tflearn/tflearn
- 预构建的运算和层:Index - TFLearn
- 笔记:tflearn/tflearn
基础模型以及数据集
-
线性回归,使用 TFLearn 实现线性回归
https://github.com/tflearn/tflearn/blob/master/examples/basics/linear_regression.py -
逻辑运算符。使用 TFLearn 实现逻辑运算符
https://github.com/tflearn/tflearn/blob/master/examples/basics/logical.py -
权重保持。保存和还原一个模型
https://github.com/tflearn/tflearn/blob/master/examples/basics/weights_persistence.py -
微调。在一个新任务上微调一个预训练的模型
https://github.com/tflearn/tflearn/blob/master/examples/basics/finetuning.py -
使用 HDF5。使用 HDF5 处理大型数据集
https://github.com/tflearn/tflearn/blob/master/examples/basics/use_hdf5.py -
使用 DASK。使用 DASK 处理大型数据集
https://github.com/tflearn/tflearn/blob/master/examples/basics/use_dask.py
计算机视觉模型及数据集
-
多层感知器。一种用于 MNIST 分类任务的多层感知实现
https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py -
卷积网络(MNIST)。用于分类 MNIST 数据集的一种卷积神经网络实现
https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py -
卷积网络(CIFAR-10)。用于分类 CIFAR-10 数据集的一种卷积神经网络实现
https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py -
网络中的网络。用于分类 CIFAR-10 数据集的 Network in Network 实现
https://github.com/tflearn/tflearn/blob/master/examples/images/network_in_network.py -
Alexnet。将 Alexnet 应用于 Oxford Flowers 17 分类任务
https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py -
VGGNet。将 VGGNet 应用于 Oxford Flowers 17 分类任务
https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network.py -
VGGNet Finetuning (Fast Training)。使用一个预训练的 VGG 网络并将其约束到你自己的数据上,以便实现快速训练
https://github.com/tflearn/tflearn/blob/master/examples/images/vgg_network_finetuning.py -
RNN Pixels。使用 RNN(在像素的序列上)分类图像
https://github.com/tflearn/tflearn/blob/master/examples/images/rnn_pixels.py -
Highway Network。用于分类 MNIST 数据集的 Highway Network 实现
https://github.com/tflearn/tflearn/blob/master/examples/images/highway_dnn.py -
Highway Convolutional Network。用于分类 MNIST 数据集的 Highway Convolutional Network 实现
https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_highway_mnist.py -
Residual Network (MNIST) 。应用于 MNIST 分类任务的一种瓶颈残差网络(bottleneck residual network)
https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_mnist.py -
Residual Network (CIFAR-10)。应用于 CIFAR-10 分类任务的一种残差网络
https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_cifar10.py -
Google Inception(v3)。应用于 Oxford Flowers 17 分类任务的谷歌 Inception v3 网络
https://github.com/tflearn/tflearn/blob/master/examples/images/googlenet.py -
自编码器。用于 MNIST 手写数字的自编码器
https://github.com/tflearn/tflearn/blob/master/examples/images/autoencoder.py
自然语言处理模型及数据集
-
循环神经网络(LSTM),应用 LSTM 到 IMDB 情感数据集分类任
https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm.py -
双向 RNN(LSTM),将一个双向 LSTM 应用到 IMDB 情感数据集分类任务:
https://github.com/tflearn/tflearn/blob/master/examples/nlp/bidirectional_lstm.py -
动态 RNN(LSTM),利用动态 LSTM 从 IMDB 数据集分类可变长度文本:
https://github.com/tflearn/tflearn/blob/master/examples/nlp/dynamic_lstm.py -
城市名称生成,使用 LSTM 网络生成新的美国城市名:
https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_cityname.py -
莎士比亚手稿生成,使用 LSTM 网络生成新的莎士比亚手稿:
https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_shakespeare.py -
Seq2seq,seq2seq 循环网络的教学示例:
https://github.com/tflearn/tflearn/blob/master/examples/nlp/seq2seq_****example.py -
CNN Seq,应用一个 1-D 卷积网络从 IMDB 情感数据集中分类词序列
https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py
强化学习案例
- Atari Pacman 1-step Q-Learning,使用 1-step Q-learning 教一台机器玩 Atari 游戏:
https://github.com/tflearn/tflearn/blob/master/examples/reinforcement_learning/atari_1step_qlearning.py
第三步:为TF新手准备的其他方面内容
-
Recommender-Wide&Deep Network,推荐系统中 wide & deep 网络的教学示例:
https://github.com/tflearn/tflearn/blob/master/examples/others/recommender_wide_and_deep.py -
Spiral Classification Problem,对斯坦福 CS231n spiral 分类难题的 TFLearn 实现:
tflearn/tflearn -
与 TensorFlow 一起使用 TFLearn 层:
https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py -
训练器,使用 TFLearn 训练器类训练任何 TensorFlow 图:
https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/layers.py -
Bulit-in Ops,连同 TensorFlow 使用 TFLearn built-in 操作:
https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/builtin_ops.py -
Summaries,连同 TensorFlow 使用 TFLearn summarizers:
https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/summaries.py -
Variables,连同 TensorFlow 使用 TFLearn Variables:
https://github.com/tflearn/tflearn/blob/master/examples/extending_tensorflow/variables.py
文中提供的网页链接,均来自于网络,如有问题,请站内告知。
转载请先获得作者 BigQuant人工智能量化投资平台 同意!