单变量微积分笔记24——分部积分

  不是所有被积函数都能解析地写出原函数。对于那些可能写出来的函数,也需要一定的积分技巧才能随心所欲,分部积分正是其中很重要的一种技巧。

基本公式

  部分积分演变自积分的乘法法则:

示例1

 

  看起来很难对付,现在尝试用部分积分解决。

  令u = lnx,u’ = (lnx)’ = x’/x = 1/x 

  令v’ = 1,v = x,u’v = 1

示例2

 

  解法1:

  令u = (lnx)2,u’ = 2lnx/x 

  令v’ = 1,v = x,u’v = 2lnx/x

 

  解法2:

  令u = lnx,u’ = (lnx)’ = x’/x = 1/x 

  v’ = lnx,通过示例1得知,v = xlnx – x

  u’v = lnx - 1

换算公式

  换算公式使用递归的方式运用部分积分公式,最终得到结果。

 

  这与前面的示例类似:

  令u = (lnx)n,u’ = n(lnx)n-1/x 

  令v’ = 1,v = x,u’v = n(lnx)n-1, uv = x (lnx)n

 

  再对后半部分反复使用分部积分,使lnx降次,直到其为0为止。如果用Fn(x)表示(lnx)n的积分,则:

 

  根据该公式:

示例1

  令u = xn,u’ = nxn-1

  令v’ = ex,v = ex,u’v = nxn-1ex, uv = xnex

示例2

  有如下图所示的高脚杯,其侧壁的曲线函数是y = ex,开口宽度为2,手柄高度为1,求高脚杯的容积。

求高脚杯容积

  首先将其转换为下图所示的数学模型,容积就是曲线绕y轴旋转一周的体积:

  可以使用圆盘法和壳层法计算体积(可参考数学笔记17——定积分的应用2(体积))。

  圆盘法:

  壳层法:

 

综合示例

示例1

  令u = x,u’ = 1

  令v’ = e-x,v = -e-x,u’v = -e-x,uv = -xe-x

示例2

  解法1:分部积分

 

  解法2:部分分式

  解法3:三角替换,令x = tanθ

 

  注意到解法1和后两种方法的结果不同,但由于 和 的导数相同,所以二者是等同的。

  也可以从另一个角度证明,现在回顾一下解法3:

 

  如果替换为sinθd的函数,则: 

 

  所以两个结果相等。

  实际上两个函数是同族的:

 

示例3

 

  u = arctanx, u’ = 1/(1 + x2), v’ = 1, v = x

  下面是arctanx的求导过程:

  y = arctanx, x = tany, 对x = tany两边同时对x求导:

  关于反函数的求导,可参考数学笔记4——导数4(反函数的导数)

示例4

 

  u = lnx, u’ = 1/x, v’ = x-2, v = -1/x。

 

示例5

 

 


   出处:微信公众号 "我是8位的"

   本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途! 

   扫描二维码关注作者公众号“我是8位的”

posted on 2017-11-23 22:42  我是8位的  阅读(4780)  评论(0编辑  收藏  举报

导航