概率笔记11——一维正态分布的最大似然估计
正态分布密度函数是:
若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。当μ=0,σ2=1是,称为标准正态分布。不需要记住这个复杂的公式,知道它的意义即可,在使用时可以随时查阅。
在研究正态分布时,我们认为每个样本都是等权的,因此μ是随机变量的均值,控制了曲线的位置,σ2控制了曲线的陡峭程度:
σ2越小,样本越靠近μ:
在上图中,当σ=0.2时,曲线更陡峭,倒钟更窄,样本更向μ处集中。
最大似然估计量
随机变量X服从正态分布:
如果有n个可观察样本,根据最大似然函数的公式:
其中:
取对数似然函数,并根据对数计算公式继续化简:
由①可以得知:
现在可以得出最终结论:
作者:我是8位的
出处:http://www.cnblogs.com/bigmonkey
本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途!
扫描二维码关注公作者众号“我是8位的”
随笔
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)
2017-08-14 图像识别的前期工作——使用pillow进行图像处理