SVM支持向量机(1)
一、SVM模型
1.函数间隔与几何间隔,哪一条线是最好的?
(1)公式化问题。
分类模型:当里面的值小于0的时候就是-1,当里面的值是大于等于0的时候就是1
函数间隔:前面乘以y(i),是为了保持数值为正值,数据点到直线的距离。把点代进去就是其函数间隔,函数间隔最好的是几何间隔最大的那个。最好的分类线就是几何间隔最大的分类线
我们要找到最好的直线,对每个数据点都计算出函数间隔,对于一个直线而言可以计算出最小函数间隔,这个最小的函数间隔可以判断直线和数据集的拟合程度。
只要成倍的增大w和b值,函数间隔就能无限增大。-1和1的二阶范数是根号2
几何间隔:
初始函数表达式:最大化集合间隔,使得所有的数据点都大于等于这个集合间隔,||w||二阶范数就是欧氏距离,两点相减然后求二阶范数,就是法向量的求法。
初始函数表达式
非凸性约束,容易达到局部最优。
核心思想:我们要找到一个分类面,使得在线性可分的时候,这条直线是最好的。一个最好的分类线就是几何间隔最大的分类线。
点到直线的距离可以理解为置信度,当点离分类界面越远的时候,
那么点对分类的置信度比较高,当点比较接近直线边缘的时候,点对分类的置信度比较低。
简化步骤1:令||w||=1,范数是1代表是集合间隔,伽马是几何间隔,最大化几何间隔,使得所有的数据点大于等于这个几何间隔,同时w的范数大于等于1,二阶范数是欧氏距离,即两个点相减然后求解二阶范数,二阶范数和欧氏距离没有什么关系,二阶范数是求解欧氏距离的一个手段,二阶范数即对于每个向量都求平凡,把每个分量加起来求根号。将函数间隔变为几何间隔。
简化步骤2:调整w和b,将r变为1,所以索性直接变为1,将最大化的调整变为最小化问题。
最终问题:变成调整w和b使得w的二阶范数的平方是最小的,最小化w的范数和最小化w的范数是一个意思。使得下面的条件得到满足
线性约束下优化二次函数
有数学方法可以 解决这个问题,可以引入对偶函数
2.最优间隔分类器
3.拉格朗日求解
(1)最小化一个f(w),
(2)构造拉个朗日函数
(3)求解:
(4)有不等式约束的时候:在广义上面可以引入一个不等的关系,
(5)拉格朗日方程:
(6)极小极大:先对变换后的拉格朗日函数求出极大值,先调整a,b,如果都满足条件的话,hi(w)=0,gi(w)是小于等于0的。这里不管如何调整a,b,其最大值都应该是0,当某个条件不允许的时候hi(w) 不等于0,那么可以调整b,使得b调整的特别大,就可以使得其为一个正无穷大。
极小极大问题的最优解:在后面会使用到。
(7)广义拉个朗日函数
对偶问题与原始问题的等价性:
约束不等式g都是凸函数:线性函数都是凸函数
约束等式h都是仿射函数:仿射和线性等价,除了允许截距b
不等式严格执行:必有g不等式是小于0的
4.最优间隔分类器求解
最优间隔分类器求解
5.SMO算法
坐标上升法:
二维坐标上升法:先调整一个维度上的,再去调整另外一个轴上的值,
6.核技法
7.软间隔分类器
8.合页损失函数
9.多分类
二、SVM实战文本分类