python数据结构:pandas(2)数据操作

一、Pandas的数据操作

  0.DataFrame的数据结构

  1.Series索引操作

    (0)Series

class Series(base.IndexOpsMixin, generic.NDFrame):
    """
    One-dimensional ndarray with axis labels (including time series).   #带轴标签的一维ndarray(包括时间序列)。

    Labels need not be unique but must be a hashable type. The object  #标签不一定是唯一的,但必须是可清洗的类型
    supports both integer- and label-based indexing and provides a host of
    methods for performing operations involving the index. Statistical
    methods from ndarray have been overridden to automatically exclude
    missing data (currently represented as NaN).

    Operations between Series (+, -, /, *, **) align values based on their
    associated index values-- they need not be the same length. The result
    index will be the sorted union of the two indexes.

    Parameters
    ----------
    data : array-like, dict, or scalar value
        Contains data stored in Series

        .. versionchanged :: 0.23.0
           If data is a dict, argument order is maintained for Python 3.6
           and later.

    index : array-like or Index (1d)
        Values must be hashable and have the same length as `data`.
        Non-unique index values are allowed. Will default to
        RangeIndex (0, 1, 2, ..., n) if not provided. If both a dict and index
        sequence are used, the index will override the keys found in the
        dict.
    dtype : numpy.dtype or None
        If None, dtype will be inferred
    copy : boolean, default False
        Copy input data
    """

 

    (1)Series索引,ser_obj['label'],ser_obj[pos],通过字符串的标签或者索引位置进行索引

import pandas as pd
ser_obj = pd.Series(range(5,10),index=['a','b','c','d','e'])   #将索引设置为['a','b','c','d','e']
print(ser_obj)

# 进行行索引
print(ser_obj['a'])   #这里索引的是标签本身
print(ser_obj[0])   #注意这里索引的是标签的位置
返回值都是5

    (2)切片索引

#切片索引
print(ser_obj[2:4])  #按照索引位置进行切片操作的时候,是不包含最后一个元素的返回第2个索引以及第3个索引 c 7; d 8 
print(ser_obj[
'b':'d']) #按照索引名切片操作的时候,最后一个元素是包含在其中的,返回的是b 6,c 7,d 8

    (3)不连续的索引,ser_obj[['label1','label3','label3']] 或者ser_obj[[pos1,pos2,pos3]],注意ser_obj[]中放的的是一个list列表,列表中放的是lab或者position,第一个[]表示需要对列表进行索引

print(ser_obj[[0,2,4]])

a 5
c 7
e 9
dtype: int64


print(ser_obj[['a','e']])

a 5
e 9
dtype: int64

  (4)布尔索引

#布尔索引
ser_bool = ser_obj>7   #判断值是否大于7
print(ser_bool)    #打印出判断的结果

a False
b False
c False
d True
e True
dtype: bool


print(ser_obj[ser_bool])        #找出ser_obj>7的情况并打印

d 8
e 9
dtype: int64


print(ser_obj[ser_obj>7])       #找出ser_obj大于7的情况

d 8
e 9
dtype: int64

   2.DataFrame索引,分为行索引和列索引,DataFrame是优先访问列索引的,如果访问不连续的列索引,那就将索引写进列表中,然后将列表进行索引操作。

    

class DataFrame(NDFrame):
    """ Two-dimensional size-mutable, potentially heterogeneous tabular data   #两维的大小可变的,可能异构的表格数据标记轴(行和列)的结构
    structure with labeled axes (rows and columns). Arithmetic operations    #算术运算:在行标签和列标签上对齐。 可以被认为是一个像字典一样,Series对象的容器。 主要的pandas数据结构。

    align on both row and column labels. Can be thought of as a dict-like
    container for Series objects. The primary pandas data structure.

    Parameters
    ----------
    data : numpy ndarray (structured or homogeneous), dict, or DataFrame
        Dict can contain Series, arrays, constants, or list-like objects

        .. versionchanged :: 0.23.0
           If data is a dict, argument order is maintained for Python 3.6
           and later.

    index : Index or array-like
        Index to use for resulting frame. Will default to RangeIndex if
        no indexing information part of input data and no index provided
    columns : Index or array-like
        Column labels to use for resulting frame. Will default to
        RangeIndex (0, 1, 2, ..., n) if no column labels are provided
    dtype : dtype, default None
        Data type to force. Only a single dtype is allowed. If None, infer
    copy : boolean, default False
        Copy data from inputs. Only affects DataFrame / 2d ndarray input

    Examples
    --------
    Constructing DataFrame from a dictionary.

    >>> d = {'col1': [1, 2], 'col2': [3, 4]}
    >>> df = pd.DataFrame(data=d)
    >>> df
       col1  col2
    0     1     3
    1     2     4

    Notice that the inferred dtype is int64.

    >>> df.dtypes
    col1    int64
    col2    int64
    dtype: object

    To enforce a single dtype:

    >>> df = pd.DataFrame(data=d, dtype=np.int8)
    >>> df.dtypes
    col1    int8
    col2    int8
    dtype: object

    Constructing DataFrame from numpy ndarray:

    >>> df2 = pd.DataFrame(np.random.randint(low=0, high=10, size=(5, 5)),
    ...                    columns=['a', 'b', 'c', 'd', 'e'])
    >>> df2
        a   b   c   d   e
    0   2   8   8   3   4
    1   4   2   9   0   9
    2   1   0   7   8   0
    3   5   1   7   1   3
    4   6   0   2   4   2

    See also
    --------
    DataFrame.from_records : constructor from tuples, also record arrays
    DataFrame.from_dict : from dicts of Series, arrays, or dicts
    DataFrame.from_items : from sequence of (key, value) pairs
    pandas.read_csv, pandas.read_table, pandas.read_clipboard
    """

  

df_obj =pd.DataFrame(np.random.rand(5,4),columns=['a','b','c','d'])  #生成一个5行4列的随机矩阵
print(df_obj)


a b c d
0 0.996924 0.681100 0.866762 0.379989
1 0.351276 0.661369 0.679242 0.099117
2 0.668854 0.023886 0.074815 0.745030
3 0.527927 0.200501 0.439957 0.486921
4 0.011786 0.303719 0.521673 0.821344

  (1)列索引:df_obj['label']

#创建DataFrame的数据结构
import numpy as np
df_obj =pd.DataFrame(np.random.rand(5,4),columns=['a','b','c','d'])  #生成一个5行4列的随机矩阵
print(df_obj)

#列索引
print('列索引')
print(df_obj['a'])  #打印出a这一列的数据
print(type(ser_obj['a']))  #这个地方返回的数据类型是Series数据类型
print(ser_obj[[0]])   #返回的是a    5
print(type(ser_obj[[0]])) #返回class 'pandas.core.series.Series'>

  (2)不连续索引df_obj[['label1','label2']]

#不连续的索引
print('不连续索引')
print(df_obj[['a','c']])  #打印出a列和c列的数据

a c
0 0.706947 0.668036
1 0.248566 0.602534
2 0.659694 0.816147
3 0.659362 0.271291
4 0.951508 0.435010

   3.Pandas的索引可以归纳为3种

    (1):loc,标签索引,使用的是索引的名称,就是标签,标签索引是包含末尾位置的

# 标签索引loc
#Series
print(ser_obj['b':'d'])   #使用标签索引是包含最后一个元素的
print(ser_obj.loc['b':'d'])   #标签索引是包含最后一个元素的
#上面两个最后输出的都是:

b 6
c 7
d 8
dtype: int6


   #DataFrame print(df_obj[
'b']) #打印出b这一列所有的值

0 0.007736
1 0.099958
2 0.974213
3 0.289881
4 0.106485
Name: b, dtype: float64


print(df_obj.loc[0:2,'b'])  #z注意这里是loc标签索引是包含最后一个元素的,输出的是0,1,2这3个

0 0.007736
1 0.099958
2 0.974213
Name: b, dtype: float64

 

    (2)iloc,位置索引,按照标签的位置进行索引

    (3)ix ,标签于位置的混合索引,如果标签和位置是一样的,就先按照标签尝试操作,然后按照位置尝试操作(这个目前的版本中已经过期了)

    注意:DataFramen索引的时候,可以将其看做ndarray的操作

      标签的切片索引是包含末尾位置的

  4.运算与对齐

    (0)np.ones()函数

 

def ones(shape, dtype=None, order='C'):
    """
   返回一个给定类型和大小的新的数组,其中填充值为1
Return a new array of given shape and type, filled with ones. Parameters ----------
   大小:整数值或者整数序列值
shape : int or sequence of ints
     新数组的大小,例如(2,3)或者2 Shape of the
new array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional
      数据类型:可选,一个数组期望的数据类型 The desired data
-type for the array, e.g., `numpy.int8`. Default is `numpy.float64`. order : {'C', 'F'}, optional, default: C Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory. Returns ------- out : ndarray Array of ones with the given shape, dtype, and order. See Also -------- ones_like : Return an array of ones with shape and type of input. empty : Return a new uninitialized array. zeros : Return a new array setting values to zero. full : Return a new array of given shape filled with value. Examples -------- >>> np.ones(5) array([ 1., 1., 1., 1., 1.]) >>> np.ones((5,), dtype=int) array([1, 1, 1, 1, 1]) >>> np.ones((2, 1)) array([[ 1.], [ 1.]]) >>> s = (2,2) >>> np.ones(s) array([[ 1., 1.], [ 1., 1.]]) """ a = empty(shape, dtype, order) multiarray.copyto(a, 1, casting='unsafe') return a

 

 

 

    (1)按照索引对齐运算,没对齐的位置NaN

      Series按照行索引对齐

 

s1 = pd.Series(range(10,20),index=range(10))
s2 = pd.Series(range(20,25),index=range(5))
print('s1=\n',s1)
print('s2=\n',s2)

#按索引对齐运算,没有对齐的位置补空,如下s1的索引是0-9,而s2的索引是0-4,
#最后计算的时候将0-4的数据进行相加,剩下的5-9的数据直接补空就可以
print(s1+s2)

 

      DataFrame按照行、列索引对齐

    (2)填充未对齐的数据进行运算

      使用add,sub,div,mul

      同时通过fill_value指定填充值

 

充未对齐的数据进行运算
# print(s1)
# print(s2)

#将s2中未对齐的数据填充为-1,然后再进行匀速那
print('s1+s2',s1.add(s2,fill_value=-1))


#对未对齐的数据进行运算
print('df1+df2=\n',df1+df2)
#加法运算,未对齐的值填充-1
print(df1.add(df2,fill_value=-1))
# 减法运算,未对齐的值填充2.0
print(df1.sub(df2,fill_value=2))

 

    (3)填充NaN

      fillna

 

#填充NaN
s3 =s1 + s2
print(s3)

#将填充的NaN值填充为-1
s3_filled =s3.fillna(-1)
print(s3_filled)

#加法运算,未对齐的部分填充NaN
df3 =df1+df2
print('df3=\n',df3)


#加法运算,未对齐的部分填充NaN
df3 =df1+df2
print('df3=\n',df3)

df3.fillna(100,inplace=True)
print(df3)

 

5.函数应用

  (1)可直接使用Numpy的ufunc函数,如abs等

 

#numpy的ufunc函数,创建一个5行4列的随机数矩阵
df = pd.DataFrame(np.random.rand(5,4))
print(df)
#
# print('绝对值为:',np.abs(df))

 

 

 

  (2)通过apply应用到行或者列上

    注意指定轴的方向,默认axis=0,axis=0表示在列的方向上

 

#使用apply方法应用行或者列数据,这里注意x= 0 是用在列的方向上,x=1是在行的方向上
f = lambda x:x.max()

print('在axis=0即列的方向上:',df.apply(f,axis=0))
print('在axis=1即行的方向上:',df.apply(f,axis=1))

#指定轴的方向,x=1表示在行的方向上
print(df.apply(lambda x:x.max(),axis=1))

  (3)通过applymap将函数应用到每个数据上

 

# 使用applymap应用到每个数据上面
f2 = lambda x:'%2f' %x
print(df.applymap(f2))

 

6.排序

  (1)sort_index,索引排序

    对 DataFrame操作的时候注意轴的方向

#索引排序
s4.sort_index(ascending=False)  #按照索引降序排列

df4 = pd.DataFrame(np.random.randn(3,4),
                    index=np.random.randint(3,size=3), #行索引,3行
                   columns=np.random.randint(4,size=4) #列索引,4个数
                   )
print(df4)

# 对索引进行排序
print(df4.sort_index(axis=1))

 

  (2)按值排序

    sort_values(by='label')

 

posted @ 2019-01-01 17:11  stone1234567890  阅读(938)  评论(0编辑  收藏  举报