分词器作用

1.切词
2.提升召回率:能搜索到的结果的比率

 

分析器

  •  

    character filter:分词之前预处理(过滤无用字符、标签等,转换一些&=>and 《Elasticsearch》=> Elasticsearch

    # html标标签解析
    PUT index_my_char_filter_html
    {
      "settings": {
        "analysis": {
          "char_filter": {
            "my_char_filter": {
              "type": "html_strip",
              "escaped_tags": ["a"] # a标签不用解析,escaped_tags:需要保留的html标签
            }
          },
          "analyzer": {
            "my_analyzerr_html": {
              "tokenizer": "keyword",
              "char_filter": ["my_char_filter"]
            }
          }
        }
      }
    }
    
    验证:
    POST index_my_char_filter_html/_analyze
    {
      "analyzer": "my_analyzerr_html",
      "text": "<p>I&apos;m so <a>happy</a>!</p>"
    }
    
    
    
    #filter mapping
    PUT index_my_char_filter_mapping
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer": {
              "tokenizer": "keyword",
              "char_filter": [
                "analyzer_mapping"
              ]
            }
          },
          "char_filter": {
            "analyzer_mapping": {
              "type": "mapping",
              "mappings": [
                "٠ => 0",
                "١ => 1",
                "٢ => 2",
                "٣ => 3",
                "٤ => 4",
                "٥ => 5",
                "٦ => 6",
                "٧ => 7",
                "٨ => 8",
                "٩ => 9"
              ]
            }
          }
        }
      }
    }
    
    
    验证:
    POST index_my_char_filter_mapping/_analyze
    {
      "analyzer": "my_analyzer",
      "text": "My license plate is ٢٥٠١٥"
    }
    
    
    #正则
    PUT my_index
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "my_analyzer": {
              "tokenizer": "standard",
              "char_filter": ["my_char_filter"]
            }
          },
          "char_filter": {
            "my_char_filter": {
              "type": "pattern_replace",
              "pattern": "(\\d+)-(?=\\d)",
              "replacement": "$1_"
            }
          }
        }
      }
    }
    
    验证:
    POST my_index/_analyze
    {
      "analyzer": "my_analyzer",
      "text": "My credit card is 123-456-789"
    }

     

  • tokenizer(分词器):分词

    GET _analyze
    {
      "tokenizer" : "standard", #默认分词器
      "filter" : ["lowercase"],
      "text" : "THE Quick FoX JUMPs"
    }

     

  • token filter:停用词、时态转换、大小写转换、同义词转换、语气词处理等。比如:has=>have  him=>he  apples=>apple  the/oh/a=>干掉

    GET /_analyze
    {
      "tokenizer": "standard",
      "filter": [
        {
          "type": "condition",
          "filter": [ "lowercase" ],
          "script": {
            "source": "token.getTerm().length() < 5"
          }
        }
      ],
      "text": "THE QUICK BROWN FOX"
    }
    
    #停用词 stopwords token filter
    PUT /index_stopword
    {
      "settings": {
        "analysis": {
          "analyzer": {
            "index_stopword_analyzer":{
              "type":"standard",
              "stopwords":"_english_"
            }
          }
        }
      }
    }
    
    GET index_stopword/_analyze
    {
      "analyzer": "index_stopword_analyzer",
      "text": "Teacher Ma is in the restroom"
    }



 

分词器:analyzer

  • standard:默认分词器,中文支持的不理想,会逐字拆分。

    GET _analyze
    {
      "tokenizer" : "standard",
      "text" : "THE Quick FoX JUMPs"
    }

     

  • Pattern Tokenizer:以正则匹配分隔符,把文本拆分成若干词项。

     

  • Simple Pattern Tokenizer:以正则匹配词项,速度比Pattern Tokenizer快。

    GET /index_stopword/_analyze
    {
      "text": "江山如此多娇,小姐姐哪里可以撩",
      "analyzer": "simple"
    }

     

  • whitespace:以空白符分隔

  • 自定义分词器
    PUT /index_custom
    {
      "settings": {
        "analysis": {
          "char_filter": {
            "test_char_filter": {
              "type": "mapping",
              "mappings": [
                "& => and",
                "| => or"
              ]
            }
          },
          "filter": {
            "test_stopwords": {
              "type": "stop",
              "stopwords": ["is","in","at","the","a","for"]
            }
          },
          "tokenizer": {
            "punctuation": { 
              "type": "pattern",
              "pattern": "[ .,!?]"
            }
          },
          "analyzer": {
            "index_custom_analyzer": {
              "type": "custom",
              "char_filter": [
                "html_strip",
                "test_char_filter"
              ],
              "tokenizer": "standard",
              "filter": ["lowercase","test_stopwords"]
            }
          }
        }
      }
    }
    
    GET /index_custom/_analyze
    {
      "text": "Teacher ma & zhang also thinks [mother's friends] is good | nice!!!",
      "analyzer": "index_custom_analyzer"
    }

     

 

创建mapping时候指定分词器

#创建mapping时候指定分词器
PUT /index_create_mapping_analuzerc/
{
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "standard"
      }
    }
  }
}


#创建mapping字段时候指定分词器
PUT /index_create_mapping_analuzerb/_mapping
{
  "properties": {
    "column": {
      "type": "text",
     "analyzer": "ik_max_word"
    }
  }
}

 

 

 

 

中文分词器

PUT index_ik_max
{
  "settings": {
    "analysis": {
      "analyzer": {
        "default": {
          "type": "ik_max_word"
        }
      }
    }
  }
}
PUT /index_ik_smart
{
  "mappings": {
      "properties": {
        "text": {
          "type": "text",
          "analyzer": "ik_max_word",
          "search_analyzer": "ik_smart"
        }
    }
  }
}

GET /index_ik_max/_analyze
{
  "text": "中华人民共和国国歌",
  "analyzer": "ik_max_word"
}
GET /index_ik_smart/_analyze
{
  "text": "中华人民共和国国歌",
  "analyzer": "ik_smart"
}

 

安装Ik分词器

1.https://github.com/medcl/elasticsearch-analysis-ik/releases
2.Releases -> Assets -> 下载zip文件
3.es的/plugin创建/ik目录
4.将文件解压到ik目录下
5.将mysql驱动包放到ik目录下
6.重新启动

 

 

热加载ik分词器

1.下载https://github.com/medcl/elasticsearch-analysis-ik
2.打包
3.获取jar包: /target/releases/elasticsearch-analysis-ik-7.6.2.zip
4.es的/plugin创建/ik目录
5.将文件elasticsearch-analysis-ik-7.6.2.zip解压在ik目录下
6.将mysql驱动包放到ik目录下
7.重新启动

备注: 修改代码目录:dic/Dictionary initial方法,这里面有对应的主词库、停用词修改代码。
原理: 
1.es启动的时候启动maven项目
2.maven项目中写个定时器,定时去mysql中查询数据
3.将查询的数据临时加载进内存,也就是es启动时候加载这些主词、停用词文件代码的地方

 

ik分词器注意点

1.es版本、kibana版本、ik分词版本你要一致
2.三个最新版本不同步,一般不要下载最新版本

 

posted on 2021-09-09 20:03  陕西小楞娃  阅读(124)  评论(0编辑  收藏  举报