Pytorch初始化模型参数
#高斯分布
torch.nn.init.normal_(tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0) → torch.Tensor
#均匀分布
torch.nn.init.uniform_(tensor: torch.Tensor, a: float = 0.0, b: float = 1.0) → torch.Tensor
#常数分布
torch.nn.init.constant_(tensor: torch.Tensor, val: float) → torch.Tensor
#全0分布
torch.nn.init.zeros_(tensor: torch.Tensor) → torch.Tensor
#全1分布
torch.nn.init.ones_(tensor: torch.Tensor) → torch.Tensor
具体代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | self .encoder_att = nn.Linear(encoder_dim, attention_dim) # linear layer to transform encoded image self .decoder_att = nn.Linear(decoder_dim, attention_dim) # linear layer to transform decoder's output self .full_att = nn.Linear(attention_dim, 1 ) # linear layer to calculate values to be softmax-ed torch.nn.init.zeros_( self .encoder_att.weight) torch.nn.init.zeros_( self .encoder_att.bias) torch.nn.init.zeros_( self .decoder_att.weight) torch.nn.init.zeros_( self .decoder_att.bias) # for m in self.modules(): torch.nn.init.zeros_( self .full_att.weight) torch.nn.init.zeros_( self .full_att.bias) for param in self .parameters(): param.requires_grad = False self .relu = nn.ReLU() self .softmax = nn.Softmax(dim = 1 ) # softmax layer to calculate weights |
初始化分为 weight 和 bias 的初始化,要分开
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异