Flink常用算子代码实现(Scala和Java)
Flink常用算子代码实现 (Scala版本和Java版本)
map之scala实现
map:
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
mapFunction(env)
}
def mapFunction(env: ExecutionEnvironment):Unit = {
val data = env.fromCollection(List(1,2,3,4,5))
data.map((x:Int)=>x+1).print()
}
输出:
2
3
4
5
6
scala语法简化:
data.map((x:Int)=>x+1).print()
println("----")
data.map((x)=>x+1).print()
println("----")
data.map(x=>x+1).print()
println("----")
data.map(_+1).print()
map之Java实现
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
mapFunction(env);
}
public static void mapFunction(ExecutionEnvironment env) throws Exception{
List<Integer> list = new ArrayList<Integer>() ;
for (int i = 1; i <= 5; i++) {
list.add(i);
}
env.fromCollection(list).map(new MapFunction<Integer, Object>() {
@Override
public Object map(Integer input) {
return input + 1;
}
}).print();
}
输出:
2
3
4
5
6
filter之scala实现
filter算子,返回满足条件的结果。
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
filterFunction(env)
}
def filterFunction(env: ExecutionEnvironment):Unit = {
env.fromCollection(List(1,2,3,4,5))
.map(_+1)
.filter(_>3)
.print()
}
输出:
4
5
6
filter 之Java实现
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
filterFunction(env);
}
public static void filterFunction(ExecutionEnvironment env) throws Exception {
List<Integer> list = new ArrayList<Integer>();
for (int i = 1; i <= 5; i++) {
list.add(i);
}
env.fromCollection(list).map(new MapFunction<Integer, Integer>() {
@Override
public Integer map(Integer input) throws Exception {
return input + 1;
}
}).filter(new FilterFunction<Integer>() {
@Override
public boolean filter(Integer input) throws Exception{
return input > 3;
}
}).print();
}
输出:
4
5
6
mapPartition 之scala实现
mapPartition的作用:原本是一个map调用一次,现在改成一个分区调用一次。
import scala.util.Random
//新建一个数据库工具类,用来连接数据库
object DBUtils {
def getConnection() = {
//获取数据库连接
new Random().nextInt(10)
}
def returnConnection(connection: String) = {
//把数据存到数据库
}
}
如果使用map函数,每次都会去请求数据库连接,请求太频繁会把数据库搞崩溃,但是mapPartition就不会,它是一个分区的数据请求一次,可以设置并行度,较少数据库的请求压力。
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
//filterFunction(env)
mapPartitionFunction(env)
}
def mapPartitionFunction(env:ExecutionEnvironment):Unit = {
val students = new ListBuffer[String]
for(i <-1 to 100) {
students.append("student " + i)
}
val data = env.fromCollection(students).setParallelism(4)
data.mapPartition(x=>{
val connection = DBUtils.getConnection()
println(connection + "......")
x
}).print();
// data.map(x=>{
// //每一个元素要存储到数据库中,肯定要先获取到一个connection
// val connection = DBUtils.getConnection() + "...."
//
// //把数据保存到DB
// DBUtils.returnConnection(connection)
// }).print();
}
现在的情况是: 使用map会请求100次,使用mapPartition 会请求4次,大大降低数据库的压力。
mapPartition之java实现
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
mapPartition(env);
}
public static void mapPartition(ExecutionEnvironment env) throws Exception {
List<String> list = new ArrayList<String>();
for (int i = 1; i <=100 ; i++) {
list.add("Student " + i);
}
DataSource<String> data = env.fromCollection(list);
data.map(new MapFunction<String, String>(){
@Override
public String map(String input) throws Exception {
String connection = DBUtils.getConnection() + "";
System.out.println("conncetion: [ " + connection + " ]");
DBUtils.returnConnection(connection);
return input;
}
}).print();
}
现在换成mapPartition:
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
mapPartition(env);
}
public static void mapPartition(ExecutionEnvironment env) throws Exception {
List<String> list = new ArrayList<String>();
for (int i = 1; i <=100 ; i++) {
list.add("Student " + i);
}
DataSource<String> data = env.fromCollection(list).setParallelism(4);
data.mapPartition(new MapPartitionFunction<String, String>() {
@Override
public void mapPartition(Iterable<String> inputs, Collector<String> collector) {
String connection = DBUtils.getConnection() + "";
System.out.println("connect: [ " + connection + " ]");
DBUtils.returnConnection(connection);
}
}).print();
}
输出:
connect: [ 9 ]
connect: [ 2 ]
connect: [ 2 ]
connect: [ 3 ]
只会创建4个链接。
first(n)之scala实现
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
firstFunction(env)
}
def firstFunction(env: ExecutionEnvironment) : Unit = {
val info = ListBuffer[(Int,String)]()
info.append((1,"Hadoop"))
info.append((1,"Spark"))
info.append((1,"Flink"))
info.append((2,"Java"))
info.append((2,"Spring"))
info.append((3,"Linux"))
info.append((4,"VUE"))
val data = env.fromCollection(info)
data.first(3).print()
输出:
(1,Hadoop)
(1,Spark)
(1,Flink)
data.groupBy(0).first(2).print()
输出:
(3,Linux)
(1,Hadoop)
(1,Spark)
(2,Java)
(2,Spring)
(4,VUE)
data.groupBy(0).sortGroup(1,Order.DESCENDING).first(2).print();
输出:
(3,Linux)
(1,Spark)
(1,Hadoop)
(2,Spring)
(2,Java)
(4,VUE)
data.groupBy(0).sortGroup(1,Order.ASCENDING).first(2).print();
(3,Linux)
(1,Flink)
(1,Hadoop)
(2,Java)
(2,Spring)
(4,VUE)
}
first 之 java实现
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
firstFunction(env);
}
public static void firstFunction(ExecutionEnvironment env) throws Exception {
List<Tuple2<Integer, String>> info = new ArrayList<Tuple2<Integer, String>>();
info.add(new Tuple2(1,"Hadoop"));
info.add(new Tuple2(1,"Spark"));
info.add(new Tuple2(1,"Flink"));
info.add(new Tuple2(2,"Java"));
info.add(new Tuple2(2,"Spring"));
info.add(new Tuple2(3,"Linux"));
info.add(new Tuple2(4,"VUE"));
DataSource<Tuple2<Integer,String>> data = env.fromCollection(info);
data.first(3).print();
System.out.println("~~~~~~~");
data.groupBy(0).first(2).print();
System.out.println("~~~~~~~");
data.groupBy(0).sortGroup(1, Order.DESCENDING).first(2).print();
System.out.println("~~~~~~~");
data.groupBy(0).sortGroup(1, Order.ASCENDING).first(2).print();
}
flatMap之scala实现
FlatMap:take one element and produce zero, one or more elements.
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
flatMapFunction(env)
}
def flatMapFunction(env: ExecutionEnvironment) : Unit = {
val info = ListBuffer[String]()
info.append("hadoop,spark")
info.append("flink,spark")
info.append("hadoop,flink,spark")
env.fromCollection(info).flatMap(_.split(",")).print()
输出:
hadoop
spark
flink
spark
hadoop
flink
spark
env.fromCollection(info).flatMap(_.split(",")).map((_,1)).groupBy(0).sum(1).print()
输出:
(hadoop,2)
(flink,2)
(spark,3)
}
flatMap之Java 实现
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
flatMapFunction(env);
}
public static void flatMapFunction(ExecutionEnvironment env) throws Exception {
List<String> list = new ArrayList<String>();
list.add("spark,hadoop,flink");
list.add("sqoop,flink,spark");
list.add("strom,flink");
DataSource<String> data = env.fromCollection(list);
data.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String input, Collector<String> collector) throws Exception{
String splits[] = input.split(",");
for (String split : splits){
collector.collect(split);
}
}
}).map(new MapFunction<String, Tuple2<String,Integer>>() {
public Tuple2<String, Integer> map(String s) throws Exception {
return new Tuple2<String, Integer>(s,1);
}
}).groupBy(0).sum(1).print();
}
输出:
(hadoop,1)
(flink,3)
(sqoop,1)
(spark,2)
(strom,1)
注意点:多写几遍
distinct 之scala实现
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
distinctFunction(env)
}
def distinctFunction(env: ExecutionEnvironment) :Unit = {
val info = ListBuffer[String]()
info.append("hadoop,spark")
info.append("flink,spark")
info.append("hadoop,flink,spark")
env.fromCollection(info).flatMap(_.split(",")).distinct().print()
}
输出:
hadoop
flink
spark
distinct之java实现
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
distinctFunction(env);
}
public static void distinctFunction(ExecutionEnvironment env) throws Exception {
List<String> list = new ArrayList<String>();
list.add("spark,hadoop,flink");
list.add("sqoop,flink,spark");
list.add("strom,flink");
DataSource<String> data = env.fromCollection(list);
data.flatMap(new FlatMapFunction<String, String>(){
@Override
public void flatMap(String input, Collector<String> collector) throws Exception {
String[] splits = input.split(",");
for (String split : splits){
collector.collect(split);
}
}
}).distinct().print();
}
输出:
hadoop
flink
sqoop
spark
strom
join之scala实现
val result = input1.join(input2).where(0).equalTo(1)
解释:0表示第一个输入的字段,1表示第二个输入的字段。
input1的第0个字段和input2的第1个字段做join。
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
joinFunction(env)
}
def joinFunction(env: ExecutionEnvironment):Unit = {
val info1 = ListBuffer[(Int,String)]() //编号 名字
info1.append((1,"张三"))
info1.append((2,"李四"))
info1.append((3,"王五"))
info1.append((4,"小强"))
val info2 = ListBuffer[(Int,String)]() //编号 城市
info2.append((1,"北京"))
info2.append((2,"上海"))
info2.append((3,"成都"))
info2.append((5,"武汉"))
val data1 = env.fromCollection(info1)
val data2 = env.fromCollection(info2)
data1.join(data2).where(0).equalTo(0).apply((first,second)=>{
(first._1,first._2,second._2)
}).print();
}
输出:
(3,王五,成都)
(1,张三,北京)
(2,李四,上海)
join之java实现
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
joinFunction(env);
}
public static void joinFunction(ExecutionEnvironment env) throws Exception{
List <Tuple2<Integer, String>> info1 = new ArrayList<Tuple2<Integer, String>>();
info1.add(new Tuple2(1,"张三")); //编号 名字
info1.add(new Tuple2(2,"李四"));
info1.add(new Tuple2(3,"王五"));
info1.add(new Tuple2(4,"小强"));
List <Tuple2<Integer, String>> info2 = new ArrayList<Tuple2<Integer, String>>();
info2.add(new Tuple2(1,"北京")); // 编号,城市
info2.add(new Tuple2(2,"上海"));
info2.add(new Tuple2(3,"成都"));
info2.add(new Tuple2(5,"杭州"));
DataSource<Tuple2<Integer,String>> data1 = env.fromCollection(info1);
DataSource<Tuple2<Integer,String>> data2 = env.fromCollection(info2);
data1.join(data2).where(0).equalTo(0).with(new JoinFunction<Tuple2<Integer,String>, Tuple2<Integer,String>, Tuple3<Integer,String,String>>(){
@Override
public Tuple3<Integer, String, String> join(Tuple2<Integer, String> first, Tuple2<Integer, String> second) throws Exception{
return new Tuple3<Integer, String, String>(first.f0, first.f1, second.f1);
}
}).print();
}
输出:
(3,王五,成都)
(1,张三,北京)
(2,李四,上海)
outjoin之scala实现
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
outjoinFunction(env)
}
def outjoinFunction(env: ExecutionEnvironment):Unit = {
val info1 = ListBuffer[(Int,String)]() //编号 名字
info1.append((1,"张三"))
info1.append((2,"李四"))
info1.append((3,"王五"))
info1.append((4,"小强"))
val info2 = ListBuffer[(Int,String)]() //编号 城市
info2.append((1,"北京"))
info2.append((2,"上海"))
info2.append((3,"成都"))
info2.append((5,"武汉"))
val data1 = env.fromCollection(info1)
val data2 = env.fromCollection(info2)
data1.leftOuterJoin(data2).where(0).equalTo(0).apply((first,second)=> {
if (second == null) {
(first._1, first._2, "null")
} else {
(first._1, first._2, second._2)
}
}).print();
}
输出:
(3,王五,成都)
(1,张三,北京)
(2,李四,上海)
(4,小强,null)
outerJoin之java实现
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
outerjoinFunction(env);
}
public static void outerjoinFunction(ExecutionEnvironment env) throws Exception{
List <Tuple2<Integer, String>> info1 = new ArrayList<Tuple2<Integer, String>>();
info1.add(new Tuple2(1,"张三")); //编号 名字
info1.add(new Tuple2(2,"李四"));
info1.add(new Tuple2(3,"王五"));
info1.add(new Tuple2(4,"小强"));
List <Tuple2<Integer, String>> info2 = new ArrayList<Tuple2<Integer, String>>();
info2.add(new Tuple2(1,"北京")); // 编号,城市
info2.add(new Tuple2(2,"上海"));
info2.add(new Tuple2(3,"成都"));
info2.add(new Tuple2(5,"杭州"));
DataSource<Tuple2<Integer,String>> data1 = env.fromCollection(info1);
DataSource<Tuple2<Integer,String>> data2 = env.fromCollection(info2);
data1.leftOuterJoin(data2).where(0).equalTo(0).with(new JoinFunction<Tuple2<Integer,String>, Tuple2<Integer,String>, Tuple3<Integer,String,String>>(){
@Override
public Tuple3<Integer, String, String> join(Tuple2<Integer, String> first, Tuple2<Integer, String> second) throws Exception{
if (second == null) {
return new Tuple3<Integer, String, String>(first.f0,first.f1,"null");
} else {
return new Tuple3<Integer, String, String>(first.f0, first.f1, second.f1);
}
}
}).print();
}
输出:
(3,王五,成都)
(1,张三,北京)
(2,李四,上海)
(4,小强,null)
cross之scala实现
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
crossFunction(env)
}
def crossFunction(env: ExecutionEnvironment):Unit = {
val info1 = ListBuffer[String]()
info1.append("长城")
info1.append("长安")
val info2 = ListBuffer[Int]()
info2.append(1)
info2.append(2)
info2.append(3)
val data1 = env.fromCollection(info1)
val data2 = env.fromCollection(info2)
data1.cross(data2).print()
}
输出:
(长城,1)
(长城,2)
(长城,3)
(长安,1)
(长安,2)
(长安,3)
cross之java实现
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
crossFunction(env);
}
public static void crossFunction(ExecutionEnvironment env) throws Exception{
List<String> info1 = new ArrayList<String>();
info1.add("张三");
info1.add("李四");
List<Integer> info2 = new ArrayList<Integer>();
info2.add(1);
info2.add(2);
info2.add(3);
DataSource<String> data1 = env.fromCollection(info1);
DataSource<Integer> data2 = env.fromCollection(info2);
data1.cross(data2).print();
}
输出:
(张三,1)
(张三,2)
(张三,3)
(李四,1)
(李四,2)
(李四,3)
sink scala 代码
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
val data = 1.to(10)
val text = env.fromCollection(data)
val path = "/Users/zhiyingliu/tmp/flink/ouput"
text.writeAsText(path,WriteMode.OVERWRITE).setParallelism(3)
env.execute("sinkTest")
}
sink Java 代码
public static void main(String[] args) throws Exception{
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
List<Integer> info = new ArrayList<Integer>();
for (int i = 0; i < 10; i++) {
info.add(i);
}
DataSource<Integer> data = env.fromCollection(info);
String filePath = "/Users/zhiyingliu/tmp/flink/ouput-java/";
data.writeAsText(filePath,FileSystem.WriteMode.OVERWRITE);
env.execute("java-sink");
}