函数2

六 递归函数

定义:在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

实例1(阶乘)

def factorial(n):
 
    result=n
    for i in range(1,n):
        result*=i
 
    return result
 
print(factorial(4))
 
 
#**********递归*********
def factorial_new(n):
 
    if n==1:
        return 1
    return n*factorial_new(n-1)
 
print(factorial_new(3))

实例2(斐波那契数列)

def fibo(n):
 
    before=0
    after=1
    for i in range(n-1):
        ret=before+after
        before=after
        after=ret
 
    return ret
 
print(fibo(3))
 
#**************递归*********************
def fibo_new(n):#n可以为零,数列有[0]
 
    if n <= 1:
        return n
    return(fibo_new(n-1) + fibo_new(n-2))
 
print(fibo_new(3))
print(fibo_new(30000))#maximum recursion depth exceeded in comparison

递归函数的优点:    是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

递归特性:

1. 必须有一个明确的结束条件

2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少

3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返     回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。)

七 内置函数(Py3.5)

 

Built-in Functions  
abs() dict() help() min() setattr()
all() dir() hex() next() slice()
any() divmod() id() object() sorted()
ascii() enumerate() input() oct() staticmethod()
bin() eval() int() open() str()
bool() exec() isinstance() ord() sum()
bytearray() filter() issubclass() pow() super()
bytes() float() iter() print() tuple()
callable() format() len() property() type()
chr() frozenset() list() range() vars()
classmethod() getattr() locals() repr() zip()
compile() globals() map() reversed() __import__()
complex() hasattr() max() round()  
delattr() hash() memoryview() set()  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

py2内置函数:https://docs.python.org/3.5/library/functions.html#repr

重要的内置函数:

  1 filter(function, sequence)

str = ['a', 'b','c', 'd']
 
def fun1(s):
    if s != 'a':
        return s
 
 
ret = filter(fun1, str)
 
print(list(ret))# ret是一个迭代器对象    

对sequence中的item依次执行function(item),将执行结果为True的item做成一个filter object的迭代器返回。可以看作是过滤函数。

  2 map(function, sequence) 

str = [1, 2,'a', 'b']
 
def fun2(s):
 
    return s + "alvin"
 
ret = map(fun2, str)
 
print(ret)      #  map object的迭代器
print(list(ret))#  ['aalvin', 'balvin', 'calvin', 'dalvin']
对sequence中的item依次执行function(item),将执行结果组成一个map object迭代器返回.
map也支持多个sequence,这就要求function也支持相应数量的参数输入:
ef add(x,y):
    return x+y
print (list(map(add, range(10), range(10))))##[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

3 reduce(function, sequence, starting_value)

from functools import reduce
 
def add1(x,y):
    return x + y
 
print (reduce(add1, range(1, 101)))## 4950 (注:1+2+...+99)
 
print (reduce(add1, range(1, 101), 20))## 4970 (注:1+2+...+99+20)

对sequence中的item顺序迭代调用function,如果有starting_value,还可以作为初始值调用.

 4 lambda

 普通函数与匿名函数的对比:

#普通函数
def add(a,b):
    return a + b
 
print add(2,3)
 
  
#匿名函数
add = lambda a,b : a + b
print add(2,3)
 
 
#========输出===========
5
5

 匿名函数的命名规则,用lamdba 关键字标识,冒号(:)左侧表示函数接收的参数(a,b) ,冒号(:)右侧表示函数的返回值(a+b)。

因为lamdba在创建时不需要命名,所以,叫匿名函数  

 

posted @ 2017-10-29 21:42  bigbaibai  阅读(124)  评论(0编辑  收藏  举报