P1969 积木大赛 题解

CSDN同步

原题链接

简要题意:

每次把一段区间 \(+1\),问得到 \(a\) 数组的最小次数。

我们可以把 \(+1\) 得到 \(a\) 换成,从 \(a\) 依次 \(-1\) 得到 \(0\).

算法一

每次求出最小值,然后所有数减掉它。

这样归并下去。

时间复杂度: \(O(n^2)\).

实际得分:\(70pts\).

算法二

用线段树维护最小值和区间修改。

时间复杂度:\(O(n \log n)\)

实际得分:\(100pts\)

算法三

你会发现,显然 \(a_{i-1}\) 会被减去 \(a_{i-1}\) 次。

此时如果 \(a_{i-1} > a_i\) ,则这两个数一共只需要 \(a_{i-1}\) 次,可以包含。

否则,就需要 \(a_i\) 次,也可以理解成 \(a_{i-1} + (a_i - a_{i-1})\)

所以,总答案为:

\(\sum_{i=1}^n \max(a_i-a_{i-1},0)\)

其中 \(a_0=0\).

这个原理是,能扩展则扩展,否则分立为差。

时间复杂度:\(O(n)\).

实际得分:\(100pts\).

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;

const int N=1e5+1;
typedef long long ll;

inline int read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
	int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;}

int n,t;
ll ans=0;

int main(){
	n=read(); t=0;
	for(int i=1,x;i<=n;i++) {
		x=read(); ans+=max(x-t,0);
		t=x; // t = a_[i-1] , x = a[i]
	} printf("%lld\n",ans);
	return 0;
}

posted @ 2020-03-26 17:54  bifanwen  阅读(209)  评论(0编辑  收藏  举报