在数据分析、挖掘方面,有哪些好书值得推荐?

入门读物:

  1. 深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。
  2. 啤酒与尿布 (豆瓣) 通过案例来说事情,而且是最经典的例子。难易程度:非常易。
  3. 数据之美 (豆瓣) 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。
  4. 数学之美 (豆瓣) 这本书非常棒啦,入门读起来很不错! 
数据分析:
  1. SciPy and NumPy (豆瓣) 这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。 
  2. Python for Data Analysis (豆瓣) 作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强!
  3. Bad Data Handbook (豆瓣) 很好玩的书,作者的角度很不同。
适合入门的教程:
  1. 集体智慧编程 (豆瓣) 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。难易程度:中。
  2. Machine Learning in Action (豆瓣) 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博:王斌_ICTIR)已经翻译这本书了 机器学习实战 (豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。难易程度:中。我带的研究生入门必看数目之一!
  3. Building Machine Learning Systems with Python (豆瓣) 虽然是英文的,但是由于写得很简单,比较理解,又有 Python 代码跟着,辅助理解。
  4. 数据挖掘导论 (豆瓣) 最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。难易程度:中上。
  5. Machine Learning for Hackers (豆瓣) 也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。

稍微专业些的:

  1. Introduction to Semi-Supervised Learning (豆瓣) 半监督学习必读必看的书。
  2. Learning to Rank for Information Retrieval (豆瓣) 微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!
  3. Learning to Rank for Information Retrieval and Natural Language Processing (豆瓣) 李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。
  4. 推荐系统实践 (豆瓣) 这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。
  5. Graphical Models, Exponential Families, and Variational Inference (豆瓣) 这个是Jordan老爷子和他的得意门徒 Martin J Wainwright 在 Foundation of Machine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。
  6. Natural Language Processing with Python (豆瓣) NLP 经典,其实主要是讲 NLTK 这个包,但是啊,NLTK 这个包几乎涵盖了 NLP 的很多内容了啊!

机器学习教材:

  1. The Elements of Statistical Learning (豆瓣) 这本书有对应的中文版:统计学习基础 (豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。
  2. 统计学习方法 (豆瓣) 李航老师的扛鼎之作,强烈推荐。难易程度:难。
  3. Machine Learning (豆瓣) 去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。

    Machine Learning (豆瓣) 这书和上面的书不是一本!这书叫:Machine Learning: An Algorithmic Perspective 之前做过我带的研究生教材,由于配有代码,所以理解起来比较容易。

  4. Pattern Recognition And Machine Learning (豆瓣) 经典中的经典。
  5. Bayesian Reasoning and Machine Learning (豆瓣) 看名字就知道了,彻彻底底的Bayesian学派的书,里面的内容非常多,有一张图将机器学习中设计算法的关系总结了一下,很棒。
  6. Probabilistic Graphical Models (豆瓣) 鸿篇巨制,这书谁要是读完了告诉我一声。
  7. Convex Optimization (豆瓣) 凸优化中最好的教材,没有之一了。课程也非常棒,Stephen老师拿着纸一步一步推到,图一点一点画,太棒了。

《Doing Data Science: Straight Talk from the Frontline》:Doing Data Science (豆瓣)

作者之一Rachel Schutt本科在密歇根大学学习数学,同时拥有纽约大学数学硕士学位,以及斯坦福大学工程经济系统和运筹学双硕士学位,美国哥伦比亚大学统计学博士学位,而后在谷歌研究所担任统计学专家。Johnson研究实验室的高级科学家兼创始人之一,目前在哥伦比亚大学讲授“数据科学导论”(Introduction to Data Science)课程。她提出了数据科学家的概念即“计算机科学家、软件工程师和统计学家的混合体。”另一位作者Cathy O’Neil是哈佛大学数学博士,麻省理工学院数学系博士后,目前在华尔街的德劭基金(D.E.Shaw)做quant。(总之是两个大牛XD)

本书前面几个章节大致介绍了数据分析法、一些机器学习算法、线性回归和逻辑回归、朴素贝叶斯等等。其中有一些内容需要一些数学基础才能吃透。 第六到十章节是本书的精华,详细介绍了如何利用金融及社交网络中的数据进行数据建模分析,值得反复回味。

《Agile Data Science: Building Data Analytics Applications with Hadoop》:Agile Data Science (豆瓣)

本书适合刚入行的数据爱好者以及有两三年工作经验数据科学家,作者立志打造一个full-stack解决方案(包括开发框架、运行环境等,有了它无需再下载别的软件)来减少前期在数据准备上必须花费的大量时间。此外书中的一些例子放在了GitHub上,建议一边看书一边DIY。 目前市面上关于Spark的书籍不多,这本120多页的薄书可以当做预热。Spark同Hadoop一样是基于Mapreduce算法实现的分布式计算,不同的是任务的中间输出结果可以保存在内存中无需读写HDFS,所以更加适合需要进行反复迭代的机器学习算法实验。作者Holden Karau曾在亚马逊数据挖掘项目组,目前是一名在谷歌工作的软件研发工程师。

《New Internet:大数据挖掘》 —— 是MS的一位资深专家写的,从算法到工具,再到DM在日志分析、营销邮件、电商、移动等业务中的实际应用,内容有较全面的介绍,语言浅显易懂,作DM领域进门读物很不错。并且在每章节后都有提供本章提到的工具或数据来源,方便学习。

《数据挖掘与数据化运营实战:思路、方法、技巧与应用》—— 这是ALi的一位数据专家写的,从书名能看出这本偏运营实践,里面有很多电商方面的实践案例。当然也有几章节概述DM工具和算法,作为入门介绍。

1、谁说菜鸟不会数据分析 (豆瓣) 其实EXCEL在工作中还是大杀器,原因是易传承,好传播

2、调查研究中的统计分析法 (豆瓣) 统计学肯定要了解,统计学书都可以的

3、SPSS统计分析精要与实例详解 (豆瓣) SPSS的内容,我是从这本书开始看的,因为这本书每个方法都有案例,可以直接看案例明白理论的作用,再加上 SPSS官方说明文档 基本上就够了

4、数据挖掘与数据化运营实战 (豆瓣) ali的专家写的,看了这本书能理解很多方法的适用场景,适用场景和数据解读能力对于业务能力要求很高。

数据仓库工具箱:维度建模的完全指南》

《Microsoft数据仓库工具箱》

《SQL Server 2008 分析服务从入门到精通》

《SQL Server 2008 报表服务从入门到精通》

另外,推荐以下链接:

原文地址:知乎

本文转自链接: http://www.zhihujingxuan.com/19146.html进行了重新整理



posted @ 2015-01-20 09:10  BI咖啡馆  阅读(1853)  评论(1编辑  收藏  举报