拉格朗日插值法板子(dls)
namespace polysum { const int D=101000; ll a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][2],C[D]; ll calcn(int d,ll *a,ll n) {//d次多项式(a[0-d])求第n项 if (n<=d) return a[n]; p1[0]=p2[0]=1; rep(i,0,d+1) { ll t=(n-i+mod)%mod; p1[i+1]=p1[i]*t%mod; } rep(i,0,d+1) { ll t=(n-d+i+mod)%mod; p2[i+1]=p2[i]*t%mod; } ll ans=0; rep(i,0,d+1) { ll t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod; if ((d-i)&1) ans=(ans-t+mod)%mod; else ans=(ans+t)%mod; } return ans; } void init(int M) {//初始化预处理阶乘和逆元(取模乘法) f[0]=f[1]=g[0]=g[1]=1; rep(i,2,M+5) f[i]=f[i-1]*i%mod; g[M+4]=powmod(f[M+4],mod-2); per(i,1,M+4) g[i]=g[i+1]*(i+1)%mod; } ll polysum(ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i] // m次多项式求第n项前缀和 a[m+1]=calcn(m,a,m+1); rep(i,1,m+2) a[i]=(a[i-1]+a[i])%mod; return calcn(m+1,a,n-1); } ll qpolysum(ll R,ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]*R^i if (R==1) return polysum(n,a,m); a[m+1]=calcn(m,a,m+1); ll r=powmod(R,mod-2),p3=0,p4=0,c,ans; h[0][0]=0;h[0][1]=1; rep(i,1,m+2) { h[i][0]=(h[i-1][0]+a[i-1])*r%mod; h[i][1]=h[i-1][1]*r%mod; } rep(i,0,m+2) { ll t=g[i]*g[m+1-i]%mod; if (i&1) p3=((p3-h[i][0]*t)%mod+mod)%mod,p4=((p4-h[i][1]*t)%mod+mod)%mod; else p3=(p3+h[i][0]*t)%mod,p4=(p4+h[i][1]*t)%mod; } c=powmod(p4,mod-2)*(mod-p3)%mod; rep(i,0,m+2) h[i][0]=(h[i][0]+h[i][1]*c)%mod; rep(i,0,m+2) C[i]=h[i][0]; ans=(calcn(m,C,n)*powmod(R,n)-c)%mod; if (ans<0) ans+=mod; return ans; } }