伯努利数求幂和(板子)
ll qpow(ll a,ll b){ ll res=1; while(b){ if(b&1) res=res*a%mod; b>>=1; a=a*a%mod; } return res; } ll c[maxn][maxn], inv[maxn], B[maxn]; void exgcd(ll a, ll b, ll &x, ll &y){ if(b == 0){ x = 1;y = 0; return ; } ll x1, y1; exgcd(b, a%b, x1, y1); x = y1; y = x1 - (a/b)*y1; } void get_fac(){ for(int i=0; i<maxn; i++){ c[i][0] = 1; c[i][i] = 1; } for(int i=1; i<maxn; i++) for(int j=1; j<=i; j++) c[i][j] = (c[i-1][j]+c[i-1][j-1])%mod; } void get_inv(){ for(int i=1; i<maxn; i++){ ll x, y; exgcd(i, mod, x, y); x = (x%mod+mod)%mod; inv[i] = x; } } void get_bb(){ B[0] = 1; for(int i=1; i<maxn-1; i++){ ll tmp = 0; for(int j=0; j<i; j++) tmp = (tmp+c[i+1][j]*B[j])%mod; B[i] = tmp; B[i] = B[i]*(-inv[i+1]); B[i] = (B[i]%mod+mod)%mod; } } ll get(ll n,int k){//返回(1^k+2^k+...n^k)%mod ++n; n %= mod; ll ans = 0; for(int i=1; i<=k+1; i++){ ans = (ans+((c[k+1][i]*B[k+1-i])%mod)*qpow(n,(ll)i))%mod; ans = (ans%mod+mod)%mod; } ans = ans*inv[k+1]; ans = (ans%mod+mod)%mod; return ans; } void init(){ get_fac(); get_inv(); get_bb(); }